A. | ($-\frac{{\sqrt{15}}}{3},\frac{{\sqrt{15}}}{3}$) | B. | ($0,\frac{{\sqrt{15}}}{3}$) | C. | ($-\frac{{\sqrt{15}}}{3},0$) | D. | ($-\frac{{\sqrt{15}}}{3},-1$) |
分析 曲線$x=\sqrt{{y^2}+6}$是焦點(diǎn)在x軸上的雙曲線的右支,由直線y=kx+2與雙曲線方程聯(lián)立得:(1-k2)x2-4kx-10=0,由此利用根的判別式、韋達(dá)定理,結(jié)合圖象能求出k的取值范圍.
解答 解:如圖,曲線$x=\sqrt{{y^2}+6}$是焦點(diǎn)在x軸上的雙曲線的右支,
由直線y=kx+2與雙曲線方程聯(lián)立$\left\{\begin{array}{l}{y=kx+2}\\{x=\sqrt{{y}^{2}+6}}\end{array}\right.$,
消去y,得:(1-k2)x2-4kx-10=0
∵x1x2>0,∴-$\frac{10}{1-{k}^{2}}$>0,
∴k2>1,解得k>1或k<-1,
又x1+x2>0,∴$\frac{4k}{1-{k}^{2}}$>0,解得k<0,
∴k<-1,
又△=(4k2)+40(1-k2)>0,整理得k2<$\frac{5}{3}$,
解得-$\frac{\sqrt{15}}{3}$<k<$\frac{\sqrt{15}}{3}$,
∴-$\frac{\sqrt{15}}{3}<k<-1$或1<k<$\frac{\sqrt{15}}{3}$,
又由題意,直線與右支交于兩點(diǎn),由圖象知k的取值范圍是-$\frac{\sqrt{15}}{3}$<k<-1.
故選:D.
點(diǎn)評(píng) 本題考查實(shí)數(shù)的取值范圍的求法,考查雙曲線、直線方程、點(diǎn)到直線的距離公式等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | -$\frac{1}{4}$ | C. | $\frac{3}{4}$ | D. | -$\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
P(K2≥k0) | 0.1 | 0.01 | 0.001 |
k0 | 2.706 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com