分析 (1)取AA1中點(diǎn)M,連結(jié)BM,PM,則PM∥AD∥BC,于是BM?平面PBC.由AA1⊥面ABCD得AA1⊥BC,又AB⊥BC,于是BC⊥平面ABB1A1,故BC⊥AB1.由△ABM≌△A1AB1得BM⊥AB1,所以AB1⊥面PBC;
(2)由PM=3可知當(dāng)BQ=3時(shí),四邊形PMQB是平行四邊形,故PQ∥BM,于是PQ∥平面B1A1AB,棱錐B1-PQB的底面△PQB是直角三角形.高為B1N.
解答 解(1)取AA1中點(diǎn)M,連結(jié)BM,PM,
在PM∥AD∥BC,∴BM?平面PBC.
∵AA1⊥面ABCD,BC?面ABCD,∴AA1⊥BC,
∵ABCD是正方形,∴AB⊥BC,
又AB?平面ABB1A1,AA1?平面ABB1A1,AB∩AA1=A,
∴BC⊥平面ABB1A1,∵AB1?平面ABB1A1,
∴BC⊥AB1.
∵AB=AA1=4,∠BAM=∠B1A1A=90°,AM=B1A1=2,
∴△ABM≌△A1AB1,∴∠MBA=∠B1AA1,
∵∠BAB1+∠B1AA1=90°,∴∠MBA+∠BAB1=90°,
∴BM⊥AB1,
∵BM?平面PBC,BC?平面PBC,BM∩BC=B,
∴AB1⊥面PBC.
(2)在BC邊上取一點(diǎn)Q,使BQ=3,
∵PM為梯形ADD1A1的中位線,A1D1=2,AD=4,
∴PM=3,PM∥AD,又∵BQ∥AD,
∴PM$\stackrel{∥}{=}$BQ,
∴四邊形PMBQ是平行四邊形,
∴PQ∥BM,又BM?平面A1ABB1,PQ?平面A1ABB1,
∴PQ∥平面A1ABB1.
∵BC⊥平面ABB1A1,BM?平面ABB1A1,
∴BQ⊥BM,
∵AB=AA1=4,AM=A1B1=2,∴BM=AB1=2$\sqrt{5}$,
設(shè)AB1∩BM=N,則AN=$\frac{AB•AM}{BM}$=$\frac{4\sqrt{5}}{5}$.∴B1N=AB1-AN=$\frac{6\sqrt{5}}{5}$.
∴V${\;}_{{B}_{1}-BPQ}$=$\frac{1}{3}$S△BPQ•B1N=$\frac{1}{3}×\frac{1}{2}×3×2\sqrt{5}×\frac{6\sqrt{5}}{5}$=6.
點(diǎn)評 本題考查了線面垂直的判定,棱錐的體積計(jì)算,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a+b>0 | B. | a+b>1 | C. | 2a+b>0 | D. | 2a+b>1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,+∞) | B. | (1,2) | C. | (1,1+$\sqrt{2}$) | D. | (2,2+$\sqrt{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | S>27 | B. | S≤27 | C. | S≥26 | D. | S<26 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com