13.已知圓錐曲線$C:\left\{{\begin{array}{l}{x=2cosα}\\{y=sinα}\end{array}}\right.(α為參數(shù))$和定點(diǎn)$A({0,\sqrt{3}})$,F(xiàn)1,F(xiàn)2是此圓錐曲線的左、右焦點(diǎn),以原點(diǎn)O為極點(diǎn),以x軸的正半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求直線AF2的極坐標(biāo)方程;
(Ⅱ)經(jīng)過點(diǎn)F1且與直線AF2垂直的直線l交此圓錐曲線于M,N兩點(diǎn),求||MF1|-|NF1||的值.

分析 (Ⅰ)消去參數(shù)α可得曲線C的方程為$\frac{{x}^{2}}{4}$+y2=1,先得直線的普通方程,化為極坐標(biāo)方程即可;
(Ⅱ)易得l的方程,解方程組可得交點(diǎn)坐標(biāo),由兩點(diǎn)間的距離公式可得.

解答 解:(Ⅰ)消去參數(shù)α可得曲線C的方程為$\frac{{x}^{2}}{4}$+y2=1,
可得F1(-$\sqrt{3}$,0),F(xiàn)2($\sqrt{3}$,0),
∴直線AF2的斜率為k=$\frac{\sqrt{3}-0}{0-\sqrt{3}}$=-1,
故直線方程為y-$\sqrt{3}$=-(x-0),即x+y=$\sqrt{3}$,
∴極坐標(biāo)方程為ρcosθ+ρsinθ=$\sqrt{3}$;
(Ⅱ)經(jīng)過點(diǎn)F1(-$\sqrt{3}$,0)且與直線AF2垂直的直線l斜率為1,
故l的方程為y-0=x+$\sqrt{3}$,即y=x+$\sqrt{3}$,
聯(lián)立$\left\{\begin{array}{l}{y=x+\sqrt{3}}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$可解得M($\frac{-4\sqrt{3}+2\sqrt{2}}{5}$,$\frac{\sqrt{3}+2\sqrt{2}}{5}$),N($\frac{-4\sqrt{3}-2\sqrt{2}}{5}$,$\frac{\sqrt{3}-2\sqrt{2}}{5}$),
∴由兩點(diǎn)間的距離公式可得||MF1|-|NF1||=$\frac{8}{5}$.

點(diǎn)評 本題考查橢圓的參數(shù)方程和直線的極坐標(biāo)方程,涉及直線和橢圓相交的問題,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知雙曲線方程$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$,以O(shè)為圓心,實(shí)半軸長為半徑作圓O,過雙曲線的焦點(diǎn)F作圓O的兩條切線,切點(diǎn)為A,B,若四邊形FAOB為正方形,則雙曲線的離心率為( 。
A.$\frac{3}{2}$B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在平面直角坐標(biāo)系xOy,已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一個漸近線的方程為y=$\sqrt{3}$x,則該雙曲線的離心率為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在幾何體ABCDEF中,F(xiàn)A⊥平面ABCD,EC∥FA,F(xiàn)A=2EC=2$\sqrt{2}$,底面ABCD為平行四邊形,AD⊥BD,AD=BD=2,F(xiàn)D⊥BE.
(1)求證:FD⊥平面BDE;
(2)求三棱錐F-BDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,直三棱柱ABC-A1B1C1中,AC=4,BC=3,AA1=4,AC⊥BC,點(diǎn)M在線段AB上.
(Ⅰ)若M是AB中點(diǎn),證明AC1∥平面B1CM;
(Ⅱ)當(dāng)BM長是多少時,三棱錐B1-BCM的體積是三棱柱ABC-A1B1C1的體積的$\frac{1}{9}$?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.過原點(diǎn)的直線l與雙曲線$\frac{x^2}{9}-\frac{y^2}{3}=-1$有兩個交點(diǎn),則直線l的傾斜角的取值范圍是( 。
A.$[{\frac{π}{6},\frac{5π}{6}}]$B.$({\frac{π}{6},\frac{5π}{6}})$C.$({\frac{π}{6},\frac{π}{2}})∪({\frac{π}{2},\frac{5π}{6}})$D.$[{\frac{π}{6},\frac{π}{2}})∪({\frac{π}{2},\frac{5π}{6}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知四棱臺ABCD-A1B1C1D1的上下底面分別是邊長為2和4的正方形,AA1=4且AA1⊥底面ABCD,點(diǎn)P為DD1的中點(diǎn).
(Ⅰ)求證:AB1⊥面PBC;
(Ⅱ)在BC邊上找一點(diǎn)Q,使PQ∥面A1ABB1,并求三棱錐Q-PBB1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖所示,四棱錐S-ABCD中,底面ABCD為正方形,且AB=4,SA⊥平面ABCD,∠SDA=60°,E、F、G分別是SC、SD、AC上的點(diǎn),且$\frac{SE}{EC}$=$\frac{SF}{FD}$=$\frac{AG}{GC}$.
(1)求證:FG∥平面SAB;
(2)若平面ABE⊥平面SCD,求多面體SABEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.如圖所示的幾何體是由一個正三棱錐S-A1B1C1和一個所有棱長都相等的正三棱柱ABC-A1B1C1組合而成,且該幾何體的外接球(幾何體的所有頂點(diǎn)都在該球面上)的表面積為7π,則三棱錐S-A1B1C1的體積為$\frac{\sqrt{21}-3}{8}$.

查看答案和解析>>

同步練習(xí)冊答案