分析 由題意,圓C2的圓心C2在x軸或y軸上,分類討論,求出圓心與半徑,即可得出結(jié)論.
解答 解:由題意,圓C2的圓心C2在x軸或y軸上,
①設(shè)C2(a,0),則|a-1|=3,a=4或-2,
(4,0)到直線y=x的距離是$\frac{4}{\sqrt{2}}$=2$\sqrt{2}$,(-2,0)到直線y=x的距離是$\frac{2}{\sqrt{2}}$=$\sqrt{2}$,
∴圓C2的方程是:(x-4)2+y2=8或:(x+2)2+y2=2;
②設(shè)C2(0,b),則$\sqrt{1+^{2}}$=3,∴b=$±2\sqrt{2}$,
(0,$±2\sqrt{2}$)到直線y=x的距離是$\frac{2\sqrt{2}}{\sqrt{2}}$=2,
∴圓C2的方程是:x2+(y-2$\sqrt{2}$)2=4或x2+(y+2$\sqrt{2}$)2=4.
點(diǎn)評(píng) 本題考查圓的方程,考查分類討論的數(shù)學(xué)思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $ω=2,ϕ=\frac{π}{3}$ | B. | $ω=2,ϕ=\frac{π}{6}$ | C. | $ω=4,ϕ=\frac{π}{6}$ | D. | $ω=2,ϕ=-\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>c>b | B. | c>a>b | C. | c>b>a | D. | a>b>c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{5}}{2}$ | B. | $\sqrt{3}$ | C. | $\sqrt{5}$ | D. | $\frac{\sqrt{10}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com