【題目】已知,設(shè).
(1)若圖象中相鄰兩條對稱軸間的距離不小于,求的取值范圍;
(2)若的最小正周期為,且當(dāng)時,的最大值是,求的解析式,并說明如何由的圖象變換得到的圖象.
【答案】(1);(2);平移變換過程見解析.
【解析】
(1)根據(jù)平面向量的坐標(biāo)運算,表示出的解析式,結(jié)合輔助角公式化簡三角函數(shù)式.結(jié)合相鄰兩條對稱軸間的距離不小于及周期公式,即可求得的取值范圍;
(2)根據(jù)最小正周期,求得的值.代入解析式,結(jié)合正弦函數(shù)的圖象、性質(zhì)與的最大值是,即可求得的解析式.再根據(jù)三角函數(shù)圖象平移變換,即可描述變換過程.
∵
∴
∴
(1)由題意可知,
∴
又,
∴
(2)∵,
∴
∴
∵,
∴
∴當(dāng)即時
∴
∴
將圖象上所有點向右平移個單位,得到的圖象;再將得到的圖象上所有點的橫坐標(biāo)變?yōu)樵瓉淼?/span>倍,縱坐標(biāo)不變,得到的圖象(或?qū)?/span>圖象上所有點的橫坐標(biāo)變?yōu)樵瓉淼?/span>倍,縱坐標(biāo)不變,得到的圖象;再將得到的圖象上所有點向右平移個單位,得到的圖象)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解人們對“延遲退休年齡政策”的態(tài)度,某部門從網(wǎng)年齡在15~65歲的人群中隨機(jī)調(diào)查100人,調(diào)查數(shù)據(jù)的頻率分布直方圖和支持“延遲退休”的人數(shù)與年齡的統(tǒng)計結(jié)果如下:
(I)由頻率分布直方圖估計年齡的眾數(shù)和平均數(shù);
(II)由以上統(tǒng)計數(shù)據(jù)填2×2列聯(lián)表,并判斷是否有95%的把握認(rèn)為以45歲為分界點的不同人群對“延遲退休年齡政策”的支持度有差異;
參考數(shù)據(jù):
(III)若以45歲為分界點,從不支持“延遲退休”的人中按分層抽樣的方法抽取8人參加某項活動.現(xiàn)從這8人中隨機(jī)抽2人.求抽到的2人中1人是45歲以下,另一人是45歲以上的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中x>0,k為常數(shù),e為自然對數(shù)的底數(shù).
(1)當(dāng)k≤0時,求的單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間(1,3)上存在兩個極值點,求實數(shù)k的取值范圍;
(3)證明:對任意給定的實數(shù)k,存在(),使得在區(qū)間(,)上單調(diào)遞增.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題:方程表示焦點在軸上的雙曲線:命題:若存在,使得成立.
(1)如果命題是真命題,求實數(shù)的取值范圍;
(2)如果“”為假命題,“”為真命題,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線:,:,則下面結(jié)論正確的是( )
A. 把上各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個單位長度,得到曲線
B. 把上各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個單位長度,得到曲線
C. 把上各點的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,再把得到的曲線向左平移個單位長度,得到曲線
D. 把上各點的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,再把得到的曲線向右平移個單位長度,得到曲線
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),是函數(shù)的圖象上任意兩點,若為,的中點,且的橫坐標(biāo)為.
(1)求;
(2)若,,求;
(3)已知數(shù)列的通項公式(,),數(shù)列的前項和為,若不等式對任意恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是定義在實數(shù)集R上的函數(shù),且y=f(x+1)是偶函數(shù),當(dāng)x≥1時,f(x)=2x﹣1,則f(),f(),f()的大小關(guān)系是( 。
A. f()<f()<f() B. f()<f()<f()
C. f()<f()<f() D. f()<f()<f()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體中,E、F、G、H分別是棱、、、的中點.
(1)判斷直線與的位置關(guān)系,并說明理由;
(2)求異面直線與所成的角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列說法:①方程表示的圖形是一個點;②命題“若,則或”為真命題;③已知雙曲線的左右焦點分別為,,過右焦點被雙曲線截得的弦長為4的直線有3條;④已知橢圓上有兩點,,若點是橢圓上任意一點,且,直線,的斜率分別為,,則為定值.
其中說法正確的序號是________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com