14.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{2^{-x}}-1,{\;}^{\;}x≤0\\{x^{\frac{1}{2}}},{\;}^{\;}{\;}^{\;}x>0\end{array}$如果f(x0)>1,則x0的取值范圍是(  )
A.(-1,1)B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(1,+∞)D.(-∞,-1)∪(0,1)

分析 根據(jù)分段函數(shù)的表達式,進行求解即可.

解答 解:若x0>0,由f(x0)>1得${{x}_{0}}^{\frac{1}{2}}$=$\sqrt{{x}_{0}}$>1得x0>1,
若x0≤0,由f(x0)>1得${2}^{-{x}_{0}}$-1>1得${2}^{-{x}_{0}}$>2,
即-x0>1,則x0<-1,
綜上x0>1或x0<-1,
故選:C

點評 本題主要考查不等式的求解,根據(jù)分段函數(shù)的表達式進行討論求解即可.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某學(xué)校擬在廣場上建造一個矩形花園,如圖所示,中間是完全相同的兩個橢圓型花壇,每個橢圓型花壇的面積均為216π平方米,兩個橢圓花壇的距離是1.5米.整個矩形花壇的占地面積為S.
(注意:橢圓面積為πab,其中a,b分別為橢圓的長短半軸長)
(1)根據(jù)圖中所給數(shù)據(jù),試用a、b表示S;
(2)當橢圓形花壇的長軸長為多少米時,所建矩形花園占地最少?并求出最小面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)[t]為不超過t的最大整數(shù),對任意實數(shù)x,令f1(x)=[3x],g(x)=3x-[3x],f2(x)=f1(g(x)),已知f1(x)=-2,f2(x)=2,則實數(shù)x的取值集合是[-$\frac{4}{9}$,-$\frac{1}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)函數(shù)y=f(x)的定義域為D,值域為A,如果存在函數(shù)x=g(t),使得函數(shù)y=f(g(t))的值域仍是A,那么稱x=g(x)是函數(shù)y=f(x)的一個等值域變換.
(1)已知函數(shù)f(x)=x2-x+1,x∈B,x=g(t)=log2t,t∈C.
1°若B,C分別為下列集合時,判斷x=g(t)是不是函數(shù)y=f(x)的一個等值域變換:①B=R,C=(1,+∞);②B=R,C=(2,+∞)
2°若B=[0,4],C=[a,b](0<a<b),若x=g(t)是函數(shù)y=f(x)的一個等值域變換,求a,b滿足的條件;
(2)設(shè)f(x)=log2x的定義域為x∈[2,8],已知x=g(t)=$\frac{m{t}^{2}-3t+n}{{t}^{2}+1}$是y=f(x)的一個等值域變換,且函數(shù)y=f[g(t)]的定義域為R,求實數(shù)m,n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若函數(shù)f(x)=x3-ax在x=2處取得極小值,則a=( 。
A.6B.12C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=$\frac{a}{2}$x2-(a+1)lnx+x+1.
(1)當a<0時,討論f(x)的單調(diào)性;
(2)若g(x)=$\frac{a+1}{2}$x2-a1nx-ax+1-f(x),設(shè)x1,x2(x1<x2)是函數(shù)g(x)的兩個極值點,若a≥$\frac{3}{2}$,且g(x1)-g(x2)≥k恒成立,求實數(shù)k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.給出下列四個命題:
①如果兩個命題互為逆否命題,那么它們的真假性相同;
②命題“若a,b都是偶數(shù),則a+b是偶數(shù)”的否命題為真命題;
③已知點A(-1,0),B(1,0),若|PA|-|PB|=2,則動點P的軌跡為雙曲線的一支;
④對于空間任意一點O和不共線的三點A,B,C,若$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$,則x+y+z=1是四點P,A,B,C共面的充要條件.
其中所有正確的命題的序號為①④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知坐標平面上兩個定點A(0,3),O(0,0),動點M(x,y)滿足:|MA|=2|OM|.
(1)求點M的軌跡方程,并說明軌跡是什么圖形;
(2)記(1)中的軌跡為C,過點N(-1,3)的直線l被C所截得的線段的長為$2\sqrt{3}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=ln(1+x).
(1)若函數(shù)g(x)=f(e4x)+ax,且g(x)是偶函數(shù),求a的值;
(2)若h(x)=f(x)[f (x)+2m-1]在區(qū)間[e-1,e3-1]上有最小值-4,求m的值.

查看答案和解析>>

同步練習冊答案