3.已知坐標(biāo)平面上兩個(gè)定點(diǎn)A(0,3),O(0,0),動(dòng)點(diǎn)M(x,y)滿足:|MA|=2|OM|.
(1)求點(diǎn)M的軌跡方程,并說(shuō)明軌跡是什么圖形;
(2)記(1)中的軌跡為C,過(guò)點(diǎn)N(-1,3)的直線l被C所截得的線段的長(zhǎng)為$2\sqrt{3}$,求直線l的方程.

分析 (1)直接利用|MA|=2|OM|,列出方程即可求點(diǎn)M的軌跡方程,然后說(shuō)明軌跡是什么圖形;
(2)設(shè)出直線方程,利用圓心到直線的距離,半徑與半弦長(zhǎng)滿足的勾股定理,求出直線l的方程.

解答 解:(1)由|MA|=2|OM|得:$\sqrt{{{(x-0)}^2}+{{(y-3)}^2}}=2\sqrt{{{(x-0)}^2}+{{(y-0)}^2}}$;…1分
化簡(jiǎn)得:x2+y2+2y-3=0,即:x2+(y+1)2=4; …3分
∴點(diǎn)M的軌跡方程是:x2+(y+1)2=4,軌跡是以(0,-1)為圓心,以2為半徑的圓. …4分
(2)當(dāng)直線l的斜率不存在時(shí),直線l:x=-1,
此時(shí)直線l被C所截得的線段的長(zhǎng)為:$2\sqrt{{2^2}-{1^2}}=2\sqrt{3}$,
∴直線l:x=-1符合題意; …6分
當(dāng)直線l的斜率存在時(shí),設(shè)l的方程為:y-3=k(x+1),即kx-y+(k+3)=0,
∴圓心到l的距離$d=\frac{|k+4|}{{\sqrt{{k^2}+1}}}$,
由題意得:${({\frac{|k+4|}{{\sqrt{{k^2}+1}}}})^2}+{(\sqrt{3})^2}={2^2}$,解得:$k=-\frac{15}{8}$; …8分
此時(shí)直線l的方程為:$-\frac{15}{8}x-y+\frac{9}{8}=0$,即:15x+8y-9=0;
∴直線l的方程為:l:x=-1或15x+8y-9=0. …10分.

點(diǎn)評(píng) 本題考查曲線軌跡方程的求法,直線與圓的位置關(guān)系的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.下列命題中正確的是(  )
A.有兩個(gè)面平行,其余各面都是平行四邊形的幾何體叫棱柱
B.有一個(gè)面是多邊形,其余各面都是三角形的幾何體叫棱錐
C.由五個(gè)面圍成的多面體一定是四棱錐
D.棱臺(tái)各側(cè)棱的延長(zhǎng)線交于一點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{2^{-x}}-1,{\;}^{\;}x≤0\\{x^{\frac{1}{2}}},{\;}^{\;}{\;}^{\;}x>0\end{array}$如果f(x0)>1,則x0的取值范圍是( 。
A.(-1,1)B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(1,+∞)D.(-∞,-1)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在區(qū)間[a,b]上,若f(x)>0,f′(x)>0,試用幾何圖形說(shuō)明下列不等式成立:
f(a)(b-a)<${∫}_{a}^$f(x)dx<f(b)(b-a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若f(x)=$\left\{\begin{array}{l}-2x-2,x∈({-∞,0})\\{x^2}-2x-1,x∈[0,+∞)\end{array}$,x1≤x2≤x3,且f(x1)=f(x2)=f(x3),則x1+x2+x3的取值的范圍是(  )
A.$[{\frac{3}{2},2})$B.$[{\frac{3}{2},2}]$C.$({-\frac{1}{2},1}]$D.$[{\frac{1}{2},2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.直線l1:x+(a+5)y-6=0與直線l2:(a-3)x+y+7=0互相垂直,則a等于( 。
A.-$\frac{1}{3}$B.-1C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知f(x)=ln(1-x)-ln(1+x).
(Ⅰ) 指出函數(shù)f(x)的定義域并求$f({-\frac{1}{3}}),f({-\frac{1}{2}}),f({\frac{1}{2}}),f({\frac{1}{3}})$的值;
(Ⅱ) 觀察(Ⅰ)中的函數(shù)值,請(qǐng)你猜想函數(shù)f(x)的一個(gè)性質(zhì),并證明你的猜想;
(Ⅲ) 解不等式:f(1+x)+ln3>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知向量$\overrightarrow{a}$=(λ+1,0,2),$\overrightarrow$=(6,2μ-1,$\frac{2}{λ}$),若$\overrightarrow{a}$∥$\overrightarrow$,則λ+μ=( 。
A.-$\frac{7}{10}$B.$\frac{7}{10}$C.-7D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知正數(shù)a,b,c滿足約束條件:$\left\{\begin{array}{l}{a≤b+c}\\{a≥\frac{1}{3}(b+c)}\end{array}$且$\left\{\begin{array}{l}{b≤a+c}\\{b≥c-2a}\end{array}$,則$\frac{2c-b}{a}$的最大值為$\frac{9}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案