9.(x+y)n的展開式中,第6項(xiàng)的系數(shù)在各項(xiàng)的系數(shù)中最大,則n=9或10或11.

分析 如果n是奇數(shù),那么是中間兩項(xiàng)的二次項(xiàng)系數(shù)最大,如果n是偶數(shù),那么是最中間那項(xiàng)的二次項(xiàng)系數(shù)最大,由此可確定n的值

解答 解:①若僅第6項(xiàng)系數(shù)最大,則共有11項(xiàng),n=10;
②若第5項(xiàng)與第6項(xiàng)的系數(shù)相等且最大,則共有10項(xiàng),n=9;
③若第6與第7系數(shù)相等且最大,則共有12項(xiàng),n=11;
所以n的值可能等于9,10,11
故答案為:9或10或11

點(diǎn)評(píng) 本題考查二項(xiàng)式系數(shù)的性質(zhì),注意分清系數(shù)與二項(xiàng)式系數(shù)的區(qū)別于聯(lián)系;其次注意什么時(shí)候系數(shù)會(huì)取到最大值.及展開式的項(xiàng)數(shù)與n的值

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖程序框圖的算法思路來源于我國古代數(shù)學(xué)名著《九章算術(shù)》中的“輾轉(zhuǎn)相除法”,執(zhí)行該程序框圖,若輸入的m,n分別為112,91,則輸出的m為( 。
A.3B.7C.0D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知不等式x2-2ax+2>0對(duì)x∈[-1,2]恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知關(guān)于x的不等式ax+3<0的解集是(3,+∞),則關(guān)于x的不等式$\frac{ax-3}{x-2}$>0的解集是(-3,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若$\frac{sin(2α-\frac{π}{3})+cos(2α-\frac{π}{6})}{sin2α+co{s}^{2}α}$=$\frac{2}{5}$,則tan($\frac{π}{4}$+α)=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在平面直角坐標(biāo)系中,O是原點(diǎn),A(2,-3),B(x,4),C(1,2),若$\overrightarrow{AB}$∥$\overrightarrow{OC}$,則x的值是( 。
A.$\frac{11}{2}$B.-12C.-$\frac{11}{2}$D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列命題:
①直線的傾斜角為α,則此直線的斜率為tanα;
②直線的斜率為tanα,則此直線的傾斜角為α;
③直線的傾斜角為α,則sinα>0.
其中正確的命題個(gè)數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知cos($\frac{2π}{3}$-α)=$\frac{1}{3}$,且-$\frac{4π}{3}$<α<$\frac{π}{6}$,求cos($\frac{5π}{6}$+α)和tan($\frac{11π}{6}$+α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知3x2+y2≤1,則3x+y的取值范圍是( 。
A.[-4,4]B.[0,4]C.[-2,2]D.[0,2]

查看答案和解析>>

同步練習(xí)冊(cè)答案