4.已知函數(shù)f(x)=x3-x2+x+2.
(1)求曲線f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)求經(jīng)過點(diǎn)A(1,3)的曲線f(x)的切線方程.

分析 (1)求出f(x)的導(dǎo)數(shù),可得切線的斜率和切點(diǎn),運(yùn)用點(diǎn)斜式方程可得所求切線的方程;
(2)設(shè)切點(diǎn)為(m,n),代入f(x),求得切線的斜率和方程,代入點(diǎn)A(1,3),解m的方程可得m=0或1,即可得到所求切線的方程.

解答 解:(1)函數(shù)f(x)=x3-x2+x+2的導(dǎo)數(shù)為f′(x)=3x2-2x+1,
可得曲線f(x)在點(diǎn)(1,f(1))處的切線斜率為3-2+1=2,
切點(diǎn)為(1,3),
即有曲線f(x)在點(diǎn)(1,f(1))處的切線方程為y-3=2(x-1),
即為2x-y+1=0;
(2)設(shè)切點(diǎn)為(m,n),可得n=m3-m2+m+2,
由f(x)的導(dǎo)數(shù)f′(x)=3x2-2x+1,
可得切線的斜率為3m2-2m+1,
切線的方程為y-(m3-m2+m+2)=(3m2-2m+1)(x-m),
由切線經(jīng)過點(diǎn)(1,3),可得
3-(m3-m2+m+2)=(3m2-2m+1)(1-m),
化為m(m-1)2=0,解得m=0或1.
則切線的方程為y-2=x或y-3=2(x-1),
即為y=x+2或y=2x+1.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的方程,考查導(dǎo)數(shù)的幾何意義,注意在某點(diǎn)處的切線和過某點(diǎn)的切線的區(qū)別,正確求導(dǎo)是解題的關(guān)鍵,屬于基礎(chǔ)題和易錯(cuò)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知隨機(jī)變量X的分布列如圖所示,則E(6X+8)=21.2.
X123
P0.20.40.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.?dāng)?shù)列{an}中,若Sn=3n+m-5,數(shù)列{an}是等比數(shù)列,則m=(  )
A.2B.1C.-1D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x-2y+4≥0\\ 2x+y-2≥0\\ 3x-y-3≤0\end{array}\right.$,則x2+y2的取值范圍是( 。
A.[$\frac{4}{5}$,13]B.[$\frac{{2\sqrt{5}}}{5}$,$\sqrt{13}$]C.[0,4]D.[1,$\sqrt{13}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.甲、乙兩同學(xué)進(jìn)行定點(diǎn)投籃游戲,已知他們每一次投籃投中的概率均為$\frac{2}{3}$,且各次投籃的結(jié)果互不影響,甲同學(xué)決定投4次,乙同學(xué)決定一旦投中就停止,否則就繼續(xù)投下去,但投籃總次數(shù)不超過4次.
(Ⅰ)求甲同學(xué)至少投中3次的概率;
(Ⅱ)求乙同學(xué)投籃次數(shù)X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合M={x∈Z|0≤x≤4},N={x|1<log2x<2},則M∩N=( 。
A.{0,1}B.{2,3}C.{3}D.{2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.用數(shù)學(xué)歸納法證明不等式$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{n+n}$>$\frac{13}{24}$(n>2,且n∈N*)的過程中,由n=k遞推到n=k+1時(shí),不等式左邊( 。
A.增加了一項(xiàng)$\frac{1}{2(k+1)}$
B.增加了兩項(xiàng)$\frac{1}{2k+1}$,$\frac{1}{2(k+1)}$
C.增加了B中的兩項(xiàng),但又減少了另一項(xiàng)$\frac{1}{k+1}$
D.增加了A中的一項(xiàng),但又減少了另一項(xiàng)$\frac{1}{k+1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列函數(shù)在(0,+∞)上為增函數(shù)的是( 。
A.y=|x-1|B.y=e-xC.y=ln(x+1)D.y=-x(x+2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知{an}是等差數(shù)列,{bn}是等比數(shù)列,Sn為數(shù)列{an}的前n項(xiàng)和,a1=b1=1,且b3S3=36,b2S2=8(n∈N*).
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)求數(shù)列{an+bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案