A. | 增加了一項(xiàng)$\frac{1}{2(k+1)}$ | |
B. | 增加了兩項(xiàng)$\frac{1}{2k+1}$,$\frac{1}{2(k+1)}$ | |
C. | 增加了B中的兩項(xiàng),但又減少了另一項(xiàng)$\frac{1}{k+1}$ | |
D. | 增加了A中的一項(xiàng),但又減少了另一項(xiàng)$\frac{1}{k+1}$ |
分析 當(dāng)n=k時(shí),寫出左端,并當(dāng)n=k+1時(shí),寫出左端,兩者比較,關(guān)鍵是最后一項(xiàng)和增加的第一項(xiàng)的關(guān)系.
解答 解:當(dāng)n=k時(shí),左端$\frac{1}{k+1}$+$\frac{1}{k+2}$+…+$\frac{1}{k+k}$,
那么當(dāng)n=k+1時(shí) 左端=$\frac{1}{k+2}$+$\frac{1}{k+3}$…+$\frac{1}{k+k}$+$\frac{1}{2k+1}$+$\frac{1}{2k+2}$,
故第二步由k到k+1時(shí)不等式左端的變化是增加了$\frac{1}{2k+1}$,$\frac{1}{2k+2}$兩項(xiàng),同時(shí)減少了$\frac{1}{k+1}$這一項(xiàng),
故選:C.
點(diǎn)評 本題考查數(shù)學(xué)歸納法,考查觀察、推理與運(yùn)算能力,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-2$\sqrt{3}$,2$\sqrt{3}$) | B. | (2$\sqrt{3}$,+∞) | C. | (-2$\sqrt{3}$,0)∪(2$\sqrt{3}$,+∞) | D. | (-2$\sqrt{3}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
滿意 | 不滿意 | 合計(jì) | |
男生 | 50 | ||
女生 | 15 | ||
合計(jì) | 100 |
參考數(shù)據(jù) | 當(dāng)Χ2≤2.706時(shí),無充分證據(jù)判定變量A,B有關(guān)聯(lián),可以認(rèn)為兩變量無關(guān)聯(lián); |
當(dāng)Χ2>2.706時(shí),有90%的把握判定變量A,B有關(guān)聯(lián); | |
當(dāng)Χ2>3.841時(shí),有95%的把握判定變量A,B有關(guān)聯(lián); | |
當(dāng)Χ2>6.635時(shí),有99%的把握判定變量A,B有關(guān)聯(lián). |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -3 | B. | 2 | C. | -9 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com