2.已知函數(shù)f(x)=sin2x+$\sqrt{3}$sinx•cosx-$\frac{1}{2}$.
(1)寫出f(x)的最小正周期;
(2)f(x)的圖象可由y=sinx的圖象經(jīng)過怎樣的變換得到?

分析 (1)由條件利用三角恒等變換,求得f(x)=sin(2x-$\frac{π}{6}$),再利用函數(shù)y=Asin(ωx+φ)的周期性,得出結(jié)論.
(2)由條件利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,可得結(jié)論.

解答 解:(1)函數(shù)f(x)=sin2x+$\sqrt{3}$sinx•cosx-$\frac{1}{2}$=$\frac{1-cos2x}{2}$+$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$=sin(2x-$\frac{π}{6}$),
故它的最小正周期為$\frac{2π}{2}$=π.
(2)把y=sinx的圖象向右平移$\frac{π}{6}$個單位,可得函數(shù)y=sin(x-$\frac{π}{6}$)的圖象;
再把所得圖象上點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?\frac{1}{2}$倍,可得f(x)=sin(2x-$\frac{π}{6}$)的圖象.

點(diǎn)評 本題主要考查三角恒等變換、函數(shù)y=Asin(ωx+φ)的周期性、函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知實(shí)數(shù)x,y滿足條件 $\left\{\begin{array}{l}x≥0\\ 4x+3y≤4\\ y≥0\end{array}$,則 z=$\frac{x+y+1}{x}$最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知a>0,x,y滿足約束條件$\left\{\begin{array}{l}x≥1\\ x+y≤3\\ y≥a({x-3}).\end{array}\right.$,若z=2x+y的最小值為0,則a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知$\frac{ai}{2-i}$+1=2i(i是虛數(shù)單位),則實(shí)數(shù)a=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸建立極坐標(biāo)系.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=5-at}\\{y=-1-t}\end{array}\right.$(t為參數(shù)),圓C的極坐標(biāo)系方程為ρ=2$\sqrt{2}$cos(θ-$\frac{π}{4}$),若圓C關(guān)于直線l對稱,則a的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.有5個英語字母a、b、c、d、e排成一行,則a不排在正中間的位置,且b不排在兩端的概率為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.求過點(diǎn)A(1,3)與B(4,2),且圓心在直線y=2x上的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在矩形ABCD中,AB=4,BC=3,E為DC的中點(diǎn),沿AE將△AED折起,使二面角D-AE-B為60.
(1)求DE與平面AC所成角的大;
(2)求二面角D-EC-B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知向量$\overrightarrow a=(ksin\frac{x}{3},co{s^2}\frac{x}{3})$,$\overrightarrow b=(cos\frac{x}{3},-k)$,實(shí)數(shù)k為大于零的常數(shù),函數(shù)f(x)=$\overrightarrow a•\overrightarrow b$,x∈R,且函數(shù)f(x)的最大值為$\frac{{\sqrt{2}-1}}{2}$.
(Ⅰ)求k的值;
(Ⅱ)在△ABC中,a,b,c分別為內(nèi)角A,B,C所對的邊,若$\frac{π}{2}$<A<π,f(A)=0,且a=2$\sqrt{10}$,求$\overrightarrow{AB}•\overrightarrow{AC}$的最小值.

查看答案和解析>>

同步練習(xí)冊答案