1.已知等差數(shù)列{an}的公差不為零,a1=2,且a1,a3,a9成等比數(shù)列,則a1+a4+a7+…+a3n-2═3n2-n.

分析 由已知條件,利用等差數(shù)列和等比數(shù)列的性質(zhì)列出方程求出公差,由此求出數(shù)列{an}的通項公式,再得出數(shù)列{a3n-2}是以2為首項,6為公差的等差數(shù)列,求出它的前n項和即可.

解答 解:等差數(shù)列{an}中,a1=2,且a1,a3,a9成等比數(shù)列,公差為d≠0,
∴${{(a}_{1}+2d)}^{2}$=a1(a1+8d),(2+2d)2=2(2+8d)
解得d=2.
∴數(shù)列{an}的通項公式為an=2+(n-1)×2=2n.
∴{a3n-2}是以2為首項,以6為公差的等差數(shù)列,
∴a1+a4+a7+…+a3n-2
=2n+$\frac{1}{2}$n(n-1)×6
=3n2-n.
故答案為:3n2-n.

點評 本題考查了等差與等比數(shù)列的通項公式和前n項和公式的應用問題,是綜合性題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

11.為了了解小學生的體能情況,抽取了某校一個年級的部分學生進行一分鐘跳繩次數(shù)測試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖),已知圖中從左到右前三個小組的頻率分別為 0.1,0.3,0.4,第一小組的頻數(shù)為 5.
(1)求第四小組的頻率;
(2)若次數(shù)在 75 次以上(含75 次)為達標,試估計該年級學生跳繩測試的達標率.
(3)在這次測試中,一分鐘跳繩次數(shù)的中位數(shù)落在哪個小組內(nèi)?試求出中位數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.給出下列命題:
(1)若$|\overrightarrow a|=|\overrightarrow b|$,則$\overrightarrow a=\overrightarrow b$;   
(2)向量不可以比較大。
(3)若$\overrightarrow a=\overrightarrow b,\overrightarrow b=\overrightarrow c$,則$\overrightarrow a=\overrightarrow c$; 
(4)$\overrightarrow a=\overrightarrow b?|\overrightarrow a|=|\overrightarrow b|,\overrightarrow a∥\overrightarrow b$
其中真命題的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.2$\sqrt{2}$-$\sqrt{7}$<$\sqrt{6}$-$\sqrt{5}$.(請在橫線上填“<”,”>”或“=”)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.在正四棱錐V-ABCD中,底面正方形ABCD的邊長為1,側(cè)棱長為2,則異面直線VA與BD所成角的大小為$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知集合M={x|y=$\sqrt{x}$},N={y|y=x2},則下列說法正確的是( 。
A.M=(0,+∞)B.M=NC.M∩N={0,1}D.M∩N=∅

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.下列說法中正確的是( 。
A.“若x2=1,則x=1或x=-1”的否命題為“若x2≠1,則x≠1或x≠-1”
B.已知命題“p∧q”為假命題,則命題“p∨q”也是假命題
C.設(shè)U為全集,集合A,B滿足(∁UA)∩B=(∁UB)∩A,則必有A=B=∅
D.設(shè)λ為實數(shù),“?x∈[-1,1],滿足$\sqrt{1-{x}^{2}}$≤λ”的充分不必要條件為“λ≥1”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.函數(shù)y=sin(x+$\frac{π}{6}$)的圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),得到圖象C1,再把圖象C1向右平移$\frac{π}{6}$個單位,得到圖象C2,則圖象C2對應的函數(shù)表達式為( 。
A.y=sin2xB.y=sin($\frac{1}{2}$x+$\frac{π}{4}$)C.y=sin$\frac{1}{2}$xD.y=sin($\frac{1}{2}$x+$\frac{π}{12}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.從25名男生l5名女生中選3名男生,2名女生分別擔任五種不同的職務,共有種不同的結(jié)果$C_{25}^3C_{15}^2A_5^5$.(只要列出式子)

查看答案和解析>>

同步練習冊答案