15.在x軸上與點(3,2,1)的距離為3的點是( 。
A.(-1,0,0)B.(5,0,0)C.(1,0,0)D.(5,0,0)和(1,0,0)

分析 設點的坐標為(x,0,0),利用兩點間的距離公式,建立方程,即可得出結論.

解答 解:設點的坐標為(x,0,0),則$\sqrt{(x-3)^{2}+4+1}$=3,
∴x=1或5,
∴在x軸上與點(3,2,1)的距離為3的點是(5,0,0)和(1,0,0).
故選:D.

點評 本題考查空間兩點間的距離公式的運用,考查學生的計算能力,比較基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

5.如圖所示,在直角坐標系xOy中,點P(1$,\;\frac{1}{2}}$)到拋物線C:y2=2px(p>0)的準線的距離為$\frac{5}{4}$,點M(t,1)(t>0)是C上的定點,A、B是C上的兩個動點,且線段AB的中點Q(m,n)在線段OM上.
(1)拋物線C的方程及t的值;
(2)當點A、B分別在第一、四象限時,求kOA•kOB的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知$\frac{sin2x}{1+co{s}^{2}x}$=$\frac{2}{3}$,求tanx的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.設數(shù)列{an}滿足a1=2,an+1=$\frac{{a}_{n}}{{a}_{n}+3}$(n∈N*),求an

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=|$\frac{1}{x}-$1|.
(1)若0<a<b且f(a)=f(b),求y=a-$\frac{2}$的取值范圍;
(2)若存在正實數(shù)a、b使得函數(shù)f(x)的定義域為[a,b],值域為[ma,mb],求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.若x,y滿足約束條件$\left\{\begin{array}{l}{x+y-2≤0}\\{x-2y+1≤0}\\{2x-y+2≥0}\end{array}\right.$,則$\frac{x}{y}$的最大值為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知圓M:(x+1)2+y2=1,圓N:(x-1)2+y2=9,動圓P與圓M外切并與圓N內(nèi)切,圓心P的軌跡為曲線C.
(I)求C的方程.
(Ⅱ)若直線y=k(x-1)與曲線C交于R,S兩點,問是否在x軸上存在一點T,使得當k變動時總有∠OTS=∠OTR?若存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.在直三棱柱A1B1C1-ABC中,AB=AC=4$\sqrt{2}$,AA1=6,BC=8,則其外接球半徑為5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.在三棱錐P-ABC中,PA=2$\sqrt{3}$,PC=2,AB=$\sqrt{7}$,BC=3,∠ABC=$\frac{π}{2}$,則三棱錐P-ABC外接球的表面積為( 。
A.B.$\frac{16}{3}$πC.$\frac{32}{3}$πD.16π

查看答案和解析>>

同步練習冊答案