11.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0))的離心率為$\frac{1}{2}$,點(diǎn)F1、F2分別是橢圓的左、右焦點(diǎn),以原點(diǎn)為圓心,橢圓的短半軸為半徑的圓與直線x-y+$\sqrt{6}$=0相切.
(1)求橢圓的方程;
(2)設(shè)橢圓上的右頂點(diǎn)和上頂點(diǎn)分別為A、B,直線l平行于AB,與x、y軸分別交于M、N,與橢圓交于C、D,證明:△BCN與△AMD的面積相等.

分析 (1)由橢圓的短半軸為半徑的圓與直線x-y+$\sqrt{6}$=0相切,可得$\frac{\sqrt{6}}{\sqrt{2}}$=b.又$\frac{c}{a}=\frac{1}{2}$,a2=b2+c2,解出即可.
(2)由于AB∥CD,要證明△BCN與△AMD的面積相等,只要證明CN=DM即可,因此只要證明線段CD與相等MN的中點(diǎn)重合,利用“點(diǎn)差法”與斜率計(jì)算公式即可得出.

解答 (1)解:∵橢圓的短半軸為半徑的圓與直線x-y+$\sqrt{6}$=0相切,∴$\frac{\sqrt{6}}{\sqrt{2}}$=b.
∴b=$\sqrt{3}$.
又$\frac{c}{a}=\frac{1}{2}$,a2=b2+c2,
解得c=1,a2=4.
∴橢圓的方程為:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1.
(2)證明:直線AB的方程為:$\frac{x}{2}+\frac{y}{\sqrt{3}}=1$,化為y=$-\frac{\sqrt{3}}{2}x+\sqrt{3}$.
設(shè)直線l的方程為:y=-$\frac{\sqrt{3}}{2}$x+m,
可得M$(\frac{2\sqrt{3}}{3}m,0)$,N(0,m),
∴線段MN的中點(diǎn)為P$(\frac{\sqrt{3}}{3}m,\frac{m}{2})$.
設(shè)C(x1,y1),D(x2,y2),線段CD的中點(diǎn)為Q(x0,y0).
則$\frac{{x}_{1}^{2}}{4}+\frac{{y}_{1}^{2}}{3}$=1,$\frac{{x}_{2}^{2}}{4}+\frac{{y}^{2}}{3}=1$,
兩式相減可得:$\frac{{x}_{0}}{4}-\frac{\sqrt{3}}{2}×\frac{{y}_{0}}{3}=0$,
∴${y}_{0}=\frac{\sqrt{3}}{2}{x}_{0}$.
∴$\frac{m}{2}=\frac{\sqrt{3}}{2}×\frac{\sqrt{3}}{3}m$,
即線段CD與相等MN的中點(diǎn)重合,
∴CN=DM,
又AB∥CD,
∴△BCN與△AMD的面積相等.

點(diǎn)評(píng) 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、“點(diǎn)差法”、斜率計(jì)算公式、三角形面積計(jì)算公式、線段的中點(diǎn),考查了推理能力與計(jì)算能力,屬于難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.半徑為R的球內(nèi)部裝有4個(gè)半徑相同的小球,則小球半徑r的可能最大值為( 。
A.$\frac{{\sqrt{3}}}{{2+\sqrt{3}}}R$B.$\frac{1}{{1+\sqrt{3}}}R$C.$\frac{{\sqrt{6}}}{{3+\sqrt{6}}}R$D.$\frac{{\sqrt{5}}}{{2+\sqrt{5}}}R$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若函數(shù)f(x)=|x-1|+|x-2|,不等式|t-k|+|t+k|≥|k|•f(x)對(duì)一切t∈R恒成立,k為非零常數(shù),則實(shí)數(shù)x的取值范圍為[$\frac{1}{2}$,$\frac{5}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)數(shù)列{an}的前n項(xiàng)積為Tn,且Tn=2-2an
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=(1-an)(1-an+1),數(shù)列{bn}的前n項(xiàng)和為Sn,求證:$\frac{1}{12}$≤Sn<$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=lnx-ax(a∈R).
(1)討論函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)g(x)=$\left\{\begin{array}{l}{f(x)(0<x≤1)}\\{ax-1(-1≤x≤0)}\end{array}\right.$,且g(x)≤1恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=e${\;}^{\frac{{x}^{2}}{a}}$-ax有且只有一個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍為(-∞,0)∪{$\root{3}{2e}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.將函數(shù)y=sin(2x-$\frac{π}{3}$)的圖象向左移動(dòng)$\frac{π}{3}$個(gè)單位,得到函數(shù)y=f(x)的圖象,則函數(shù)y=f(x)的一個(gè)單調(diào)遞增區(qū)間是( 。
A.[-$\frac{π}{4}$,$\frac{π}{4}$]B.[-$\frac{π}{2}$,0]C.[-$\frac{5π}{12}$,$\frac{π}{12}$]D.[$\frac{π}{12}$,$\frac{7π}{12}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知直線l1∥l2,在l1上取三點(diǎn),l2上取兩點(diǎn),求由這五個(gè)點(diǎn)能確定平面的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.某班有50名同學(xué),一次數(shù)學(xué)考試的成績(jī)X服從正態(tài)分布N(110,102),已知P(100≤X≤110)=0.34,估計(jì)該班學(xué)生數(shù)學(xué)成績(jī)?cè)?20分以上的有8人.

查看答案和解析>>

同步練習(xí)冊(cè)答案