分析 (1)令x=y=1,代入f(x•y)=f(x)+f(y)-1,即可得到f(1)的方程,解之即可求得f(1).
(2)設x1,x2∈(0,+∞)且x1<x2,利用定義法證明f(x1)=f($\frac{{x}_{1}}{{x}_{2}}$•x2)=f($\frac{{x}_{1}}{{x}_{2}}$)+f(x2)-1>f(x2),進而由定義得出函數(shù)的單調(diào)性.
(3)由(2)(x)在(0,+∞)上是單調(diào)遞增函數(shù),原不等式可轉(zhuǎn)化為0<x<$\frac{1}{x}$,解關于x的不等式,可求.
解答 (1)解;(1)∵對任意x,y∈(0,+∞),都有f(x•y)=f(x)+f(y)-1.
令x=y=1可得f(1)=2f(1)-1.
∴f(1)=1.
(2)證明:設x1>x2>0,則$\frac{{x}_{1}}{{x}_{2}}$>1,
∵當x>1時f(x)≥1.
∴f(x1)=f($\frac{{x}_{1}}{{x}_{2}}$•x2)=f($\frac{{x}_{1}}{{x}_{2}}$)+f(x2)-1>f(x2).
∴函數(shù)f(x)在(0,+∞)上單調(diào)遞增.
(3)解:∵f(x)在(0,+∞)上是單調(diào)遞增函數(shù),f(x)<f($\frac{1}{x}$),
∴0<x<$\frac{1}{x}$,
∴0<x<1,即不等式的解集為{x|0<x<1}.
點評 本題考點是抽象函數(shù)及其應用,考查靈活賦值求值的能力以及靈活變形證明函數(shù)單調(diào)性的能力.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2}{5}$ | B. | $\frac{3}{5}$ | C. | $\frac{25}{36}$ | D. | $\frac{11}{36}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{\sqrt{6}}{2}$ | C. | $\sqrt{2}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com