【題目】已知,函數(shù).

1)當時,在給出的坐標系中,畫出函數(shù)的大致圖象,根據(jù)圖象寫出函數(shù)的單調(diào)減區(qū)間;

2)討論關于的方程解的個數(shù).

【答案】1的單調(diào)遞減區(qū)間是;2)當, 關于的方程解有1個; 時,關于的方程解有2個;當, 關于的方程解有3個.

【解析】

1)去絕對值轉(zhuǎn)化為分段函數(shù),即可作出函數(shù)的圖像,根據(jù)圖像求出單調(diào)遞減區(qū)間;

2)關于的方程解的個數(shù)等價于于直線的圖像交點個數(shù).

(1)當時,

其圖像為:

根據(jù)圖像的單調(diào)遞減區(qū)間是.

2)依題意,關于關于的方程解的個數(shù)等價于于直線的圖像交點個數(shù).

當且僅當是等號成立,

所以當,即時,于直線的圖像有1個交點;

時,于直線的圖像2個交點;

時,于直線的圖像3個交點;

所以當, 關于的方程解有1個; 時,關于的方程解有2個;當, 關于的方程解有3個.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,點A(0,3),直線ly=2x-4,設圓C的半徑為1,圓心C在直線l上,若圓C上存在點M,使|MA|=2|MO|,則點M的軌跡方程是________,圓心C的橫坐標的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(1)若,求函數(shù)的最小值;

2)若對于任意恒成立,求a的取值范圍;

(3)若,求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】手機完全充滿電量,在開機不使用的狀態(tài)下,電池靠自身消耗一直到出現(xiàn)低電量警告之間所能維持的時間稱為手機的待機時間.

為了解, 兩個不同型號手機的待機時間,現(xiàn)從某賣場庫存手機中隨機抽取, 兩個型號的手機各臺,在相同條件下進行測試,統(tǒng)計結(jié)果如下,

手機編號

型待機時間(

型待機時間(

其中, , 是正整數(shù),且

)該賣場有型手機,試估計其中待機時間不少于小時的臺數(shù).

)從型號被測試的臺手機中隨機抽取臺,記待機時間大于小時的臺數(shù)為,求的分布列及其數(shù)學期望.

)設, 兩個型號被測試手機待機時間的平均值相等,當型號被測試手機待機時間的方差最小時,寫出, 的值(結(jié)論不要求證明).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解男性家長和女性家長對高中學生成人禮儀式的接受程度,某中學團委以問卷形式調(diào)查了位家長,得到如下統(tǒng)計表:

(1)據(jù)此樣本,能否有的把握認為“接受程度”與家長性別有關?說明理由;

(2)學校決定從男性家長中按分層抽樣方法選出人參加今年的高中學生成人禮儀式,并從中選人交流發(fā)言,設是發(fā)言人中持“贊成”態(tài)度的人數(shù),求的分布列及數(shù)學期望.

參考數(shù)據(jù)

參考公式

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中a

時,若處取得極小值,求a的值;

時.

若函數(shù)在區(qū)間上單調(diào)遞增,求b的取值范圍;

若存在實數(shù),使得,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱中,,,.

(1)證明:

(2)若平面平面,,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題錯誤的是(  )

A. pq為假命題,則pq為假命題

B. a,b∈[0,1],則不等式a2b2<成立的概率是

C. 命題“x∈R,使得x2x+1<0”的否定是“x∈R,x2x+1≥0”

D. 已知函數(shù)f(x)可導,則“f′(x0)=0”是“x0是函數(shù)f(x)的極值點”的充要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

判斷在定義域上的單調(diào)性;

上的最小值為2,求a的值.

查看答案和解析>>

同步練習冊答案