設(shè)數(shù)集M={x|0≤x≤
3
4
},N={x|n-
1
3
≤x≤n},且N是集合{x|0≤x≤1}的子集,如果把b-a叫做集合{x|a≤x≤b}的“長(zhǎng)度”,那么集合M∩N的“長(zhǎng)度”的最小值是
 
考點(diǎn):交集及其運(yùn)算
專題:集合
分析:由區(qū)間長(zhǎng)度的定義求出集合M和N的區(qū)間長(zhǎng)度,作和后減去1得答案.
解答: 解:∵M(jìn)={x|0≤x≤
3
4
},N={x|n-
1
3
≤x≤n},
由區(qū)間長(zhǎng)度的定義知,M的區(qū)間長(zhǎng)度為
3
4
,N的區(qū)間長(zhǎng)度為n-(n-
1
3
)=
1
3

∴集合M∩N的“長(zhǎng)度”的最小值是
3
4
+
1
3
-1=
1
12

故答案為:
1
12
點(diǎn)評(píng):本題考查了交集及其運(yùn)算,關(guān)鍵是對(duì)題意的理解,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x2-3x+2≥0},B={x|x≥t},若A∪B=R,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解關(guān)于x的不等式:2x2-(5a+1)x+2(a2+a)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)g(x)=1-cos(πx+2φ)(0<φ<
π
2
)的圖象過(guò)點(diǎn)(
1
2
,2),若有4個(gè)不同的數(shù)xi滿足g(xi)=M(0<M<1),且xi<4(i=1,2,3,4),則x1+x2+x3+x4等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義在R上以2為周期的偶函數(shù),且當(dāng)0≤x≤1時(shí),f(x)=log 
1
2
(1-x),則f(-
2011
4
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
2
x2-ax+(a-1)lnx(a>2),則f(x)的單調(diào)增區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合M={x|-1≤x≤2},集合B={x||x-2|<2},則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法正確的有
 

①對(duì)于函數(shù)f(x)=x2+mx+n,若f(a)>0,f(b)>0,則函數(shù)f(x)在區(qū)間(a,b)內(nèi)一定沒(méi)有零點(diǎn).
②函數(shù)f(x)=2x-x2有兩個(gè)零點(diǎn).
③若奇函數(shù)、偶函數(shù)有零點(diǎn),其和為0.
④當(dāng)a=1時(shí),函數(shù)f(x)=|x2-2x|-a有三個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

二項(xiàng)式(2x+
1
x
4的展開式中x2的系數(shù)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案