A. | $\frac{{x}^{2}}{64}$-$\frac{{y}^{2}}{36}$=1 | B. | $\frac{{x}^{2}}{36}$-$\frac{{y}^{2}}{64}$=1 | C. | $\frac{{x}^{2}}{32}$-$\frac{{y}^{2}}{18}$=1 | D. | $\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1 |
分析 根據(jù)雙曲線的性質(zhì)結(jié)合雙曲線漸近線的方程建立方程關(guān)系求出a,b的值即可得到結(jié)論.
解答 解:∵雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)上的點到其焦點的最小距離為2,
∴c-a=2,則c=a+2,
∵漸近線方程為y=±$\frac{3}{4}$x,
∴$\frac{a}$=$\frac{3}{4}$,即b=$\frac{3}{4}$a,
則b2=$\frac{9}{16}$a2=c2-a2,
即c2=$\frac{25}{16}$a,則c=$\frac{5}{4}$a=a+2,
則a=8,b=$\frac{3}{4}$×8=6,
則雙曲線的方程為$\frac{{x}^{2}}{64}$-$\frac{{y}^{2}}{36}$=1,
故選:A
點評 本題主要考查雙曲線的方程,根據(jù)條件建立方程求出a,b的值是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 3 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30 | B. | 600 | C. | 720 | D. | 840 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若x,y∈R,x,y全不為0,則x2+y2≠0 | B. | 若x,y∈R,x,y不全為0,則x2+y2=0 | ||
C. | 若x,y∈R,x,y不全為0,則x2+y2≠0 | D. | 若x,y∈R,x,y全為0,則x2+y2≠0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | -$\frac{2}{3}$ | C. | $\frac{1}{2}$ | D. | -5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com