A. | 1-$\frac{1}{e}$ | B. | 2-$\frac{2}{e}$ | C. | 1+2e2 | D. | $\frac{2}{e}$-1 |
分析 化簡f(x)≤0可得$a≥{x^3}-3x+3-\frac{x}{e^x}$,令F(x)=x3-3x+3-$\frac{x}{e^x}$,則F′(x)=(x-1)(3x+3+e-x),令G(x)=3x+3+e-x,則G′(x)=3-e-x,實數(shù)a的最小值為$1-\frac{1}{e}$,由此利用導數(shù)性質(zhì)能求出結(jié)果.
解答 解:∵f(x)=x3-3x+3-$\frac{x}{e^x}$-a,
∴化簡f(x)≤0可得$a≥{x^3}-3x+3-\frac{x}{e^x}$,
令F(x)=x3-3x+3-$\frac{x}{e^x}$,
∴$F′(x)=3{x^2}-3+\frac{x-1}{e^x}=(x-1)(3x+3+{e^{-x}})$,
令G(x)=3x+3+e-x,則G′(x)=3-e-x,
故當e-x=3,即x=-ln3時,G(x)=3x+3+e-x有最小值G(-ln3)=-3ln3+6=3(2-ln3)>0,
故當x∈[-2,1)時,F(xiàn)′(x)<0,x∈(1,+∞)時,F(xiàn)′(x)>0,
故F(x)有最小值$F(1)=1-3+3-\frac{1}{e}=1-\frac{1}{e}$,
故實數(shù)a的最小值為$1-\frac{1}{e}$.
故選:A.
點評 本題考查實數(shù)的最小值的求法,是中檔題,解題時要認真審題,注意導數(shù)性質(zhì)的合理運用.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{400π}{3}$ | B. | 150π | C. | $\frac{500π}{3}$ | D. | $\frac{600π}{7}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 5 | B. | 6 | C. | 10 | D. | 12 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com