6.設(shè)f(x)=x2,f(φ(x))=22x,則φ(x)=±2x

分析 利用已知條件列出方程求解即可.

解答 解:f(x)=x2,f(φ(x))=22x
可得(φ(x))2=22x,
解得φ(x))=±2x,
故答案為:±2x

點(diǎn)評 本題考查函數(shù)的解析式的求法,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=x2+ax+b(a,b∈R)的值域?yàn)閇0,+∞),若關(guān)于x的方程f(x)=c(c∈R)有兩個(gè)實(shí)根m,m+6,則實(shí)數(shù)c的值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知命題p:?x0∈R,3${\;}^{{x}_{0}}$≤0;命題q:f(x)=lnx在區(qū)間(0,+∞)上是增函數(shù),下列是真命題的是( 。
A.p∧¬qB.¬p∧¬qC.¬p∧qD.p∧q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦點(diǎn)在圓x2+y2=4上,過橢圓的左頂點(diǎn)傾斜角為$\frac{π}{3}$的直線與圓x2+y2=4相切,則橢圓的離心率( 。
A.$\frac{\sqrt{3}}{4}$B.$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.求過原點(diǎn)且與y軸及圓(x-1)2+(y-2)2=1相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}+2x,x≥0}\\{{x}^{2}-2x,x<0}\end{array}\right.$,若關(guān)于x的不等式[f(x)]2+af(x)<0恰有1個(gè)整數(shù)解,則實(shí)數(shù)a的最大值為( 。
A.2B.3C.5D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知A(1,0,0),B(0,1,0),C(0,0,2)
(1)若$\overrightarrow{DB}$∥$\overrightarrow{AC}$,$\overrightarrow{DC}$∥$\overrightarrow{AB}$,求點(diǎn)D的坐標(biāo);
(2)求到A,B兩點(diǎn)距離相等的點(diǎn)P(x,y,z)的坐標(biāo)應(yīng)滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)P是雙曲線$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1上一點(diǎn),F(xiàn)1、F2是雙曲線的兩焦點(diǎn),若|PF1|=3,則|PF2|=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=cos(2x-$\frac{π}{3}$)+sin2x;
(1)求f(x)的最小正周期和單調(diào)增區(qū)間;
(2)若0<β<$\frac{π}{2}$<α<π,且f($\frac{α+β}{2}$)=0,f($\frac{π}{4}$+β)=1,求f($\frac{α-β}{2}$)的值.

查看答案和解析>>

同步練習(xí)冊答案