【題目】如圖是一個纜車示意圖,該纜車的半徑為4.8 m,圓上最低點與地面的距離為0.8 m,纜車每60 s轉(zhuǎn)動一圈,圖中OA與地面垂直,以O(shè)A為始邊,逆時針轉(zhuǎn)動θ角到OB,設(shè)B點與地面的距離為h m.
(1)求h與θ之間的函數(shù)解析式;
(2)設(shè)從OA開始轉(zhuǎn)動,經(jīng)過t s達到OB,求h與t之間的函數(shù)解析式,并計算經(jīng)過45 s后纜車距離地面的高度.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知各項均不相等的等差數(shù)列的前五項和,且成等比數(shù)列.
(1)求數(shù)列的通項公式;
(2)若為數(shù)列的前項和,且存在,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面是邊長為2的正方形,垂直于底面,.
(1)求證;
(2)求平面與平面所成二面角的大小;
(3)設(shè)棱的中點為,求異面直線與所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)求函數(shù)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,,為,軸上兩個動點,點在直線上,且滿足,.
(1)求點的軌跡方程;
(2)記點的軌跡為曲線,為曲線與正半軸的交點,、為曲線上與不重合的兩點,且直線與直線的斜率之積為,求證直線經(jīng)過一個定點,并求出該定點坐標(biāo)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知三棱柱的側(cè)棱與底面垂直,,,,分別是,的中點,點在直線上,且.
(Ⅰ)證明:無論取何值,總有;
(Ⅱ)當(dāng)取何值時,直線與平面所成的角最大?并求該角取最大值時的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)為偶函數(shù).
(1) 求的值;
(2)若的最小值為,求的最大值及此時的取值;
(3)在(2)的條件下,設(shè)函數(shù),其中.已知在處取得最小值并且點是其圖象的一個對稱中心,試求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的中心在原點,焦點在x軸上,短軸長為,離心率為.
Ⅰ求橢圓C的方程;
Ⅱ若過點的直線與橢圓C交于A,B兩點,且P點平分線段AB,求直線AB的方程;
Ⅲ一條動直線l與橢圓C交于不同兩點M,N,O為坐標(biāo)原點,的面積為求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動點與點的距離和它到直線:的距離的比是.
(1)求動點的軌跡的方程;
(2)已知定點,若,是軌跡上兩個不同動點,直線,的斜率分別為,,且,試判斷直線的斜率是否為定值,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com