11.若α滿足$sin(α-\frac{π}{6})=\frac{1}{3}$,則$cos(\frac{2π}{3}-α)$的值為(  )
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.$\frac{{2\sqrt{2}}}{3}$D.$-\frac{{2\sqrt{2}}}{3}$

分析 由$cos(\frac{2π}{3}-α)$=cos[$\frac{π}{2}$-($α-\frac{π}{6}$)],由此利用誘導(dǎo)公式能求出結(jié)果.

解答 解:∵$sin(α-\frac{π}{6})=\frac{1}{3}$,
∴$cos(\frac{2π}{3}-α)$=cos[$\frac{π}{2}$-($α-\frac{π}{6}$)]=$sin(α-\frac{π}{6})=\frac{1}{3}$.
故選:A.

點(diǎn)評(píng) 本題考查三角函數(shù)值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意誘導(dǎo)公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在圓x2+y2=8上任取一點(diǎn)P,過點(diǎn)P作x軸的垂線段PD,D為垂足,當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),線段PD的中點(diǎn)M的軌跡方程是$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{2}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知正實(shí)數(shù)a,b滿足$\frac{1}{a}+\frac{9}=6$,則(a+1)(b+9)的最小值是( 。
A.36B.32C.16D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.?dāng)?shù)列{an}滿足an+1+(-1)nan=2n-1,則{an}的前64項(xiàng)和為2080.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.如圖,測(cè)量河對(duì)岸的塔高AB時(shí),可以選與塔底B在同一水平面內(nèi)的兩個(gè)測(cè)點(diǎn)C與D.現(xiàn)測(cè)得∠BCD=75°,∠BDC=60°,CD=20,并在點(diǎn)C測(cè)得塔頂A的仰角為45°,則塔高AB為$10\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)Sn是數(shù)列{an}的前項(xiàng)和,且a1=1,an+1=an+2,則Sn=n2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知f(x)=3sin(2x+$\frac{π}{6}$)-1,x∈R
(1)求f(x)取最大值時(shí)x的集合;
(2)把y=sinx通過怎樣的變換可得f(x)=3sin(2x+$\frac{π}{6}$)-1,x∈R的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知等差數(shù)列{an}的公差為2,若a3=4,求a12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如圖所示,已知在圓錐SO中,底面半徑r=1,母線長(zhǎng)l=4,M為母線SA上的一個(gè)點(diǎn),且SM=x,從點(diǎn)M拉一根繩子,圍繞圓錐側(cè)面轉(zhuǎn)到點(diǎn)A,求繩子最短時(shí),頂點(diǎn)到繩子的最短距離$\frac{4x}{\sqrt{{x}^{2}+16}}$(用x表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案