分析 (1)由題意可得c=2,再由離心率公式可得a,再由a,b,c關(guān)系可得b,進而得到橢圓方程;
(2)求得直線方程,聯(lián)立橢圓方程,運用韋達(dá)定理和弦長公式,計算即可得到弦長AB.
解答 解:(1)由左焦點F(-2,0),即c=2,
又e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,即有a=2$\sqrt{2}$,
又b2=a2-c2=4,
即有橢圓C的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1;
(2)設(shè)直線L與橢圓交于A(x1,y1),B(x2,y2),
由直線L的斜率為1且過右焦點(2,0),
即有直線方程為y=x-2,
將直線y=x-2代入$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1得3x2-8x=0,
x1+x2=$\frac{8}{3}$,x1x2=0,
即有|AB|=$\sqrt{(1+{k}^{2})[({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}]}$=$\sqrt{2×\frac{64}{9}}$=$\frac{8\sqrt{2}}{3}$.
點評 本題考查橢圓的方程和性質(zhì),主要考查橢圓的離心率和方程的運用,聯(lián)立直線方程,運用韋達(dá)定理和弦長公式,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com