6.我國古代數(shù)學(xué)著作《九章算術(shù)》有如下問題:“今有人持金出五關(guān),前關(guān)二稅一,次關(guān)三而稅一,次關(guān)四而稅一,次關(guān)五而稅一,次關(guān)六而稅一,并五關(guān)所稅,適重一斤.問本持金幾何”其意思為“今有人持金出五關(guān),第1關(guān)收稅金$\frac{1}{2}$,第2關(guān)收稅金$\frac{1}{3}$,第3關(guān)收稅金$\frac{1}{4}$,第4關(guān)收稅金$\frac{1}{5}$,第5關(guān)收稅金$\frac{1}{6}$,5關(guān)所收稅金之和,恰好1斤重,設(shè)這個人原本持金為x,按此規(guī)律通過第8關(guān),”則第8關(guān)需收稅金為$\frac{1}{72}$x.

分析 第1關(guān)收稅金:$\frac{1}{2}$x;第2關(guān)收稅金:$\frac{1}{3}$(1-$\frac{1}{2}$)x=$\frac{1}{2×3}$x;第3關(guān)收稅金:$\frac{1}{4}$(1-$\frac{1}{2}$-$\frac{1}{6}$)x=$\frac{1}{3×4}$x;…,可得第8關(guān)收稅金.

解答 解:第1關(guān)收稅金:$\frac{1}{2}$x;第2關(guān)收稅金:$\frac{1}{3}$(1-$\frac{1}{2}$)x=$\frac{1}{2×3}$x;第3關(guān)收稅金:$\frac{1}{4}$(1-$\frac{1}{2}$-$\frac{1}{6}$)x=$\frac{1}{3×4}$x;
…,可得第8關(guān)收稅金:$\frac{1}{8×9}$x,即$\frac{1}{72}$x.
故答案為:$\frac{1}{72}$.

點(diǎn)評 本題考查了數(shù)列的通項(xiàng)公式及其應(yīng)用,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)集合A={x∈Z||x|≤2},$B=\left\{{\left.x\right|\frac{3}{2x}≤1}\right\}$,則A∩B=( 。
A.{1,2}B.{-1,-2}C.{-2,-1,2}D.{-2,-1,0,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知i為虛數(shù)單位,則z=i+i2+i3+…+i2017=( 。
A.0B.1C.-iD.i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若命題p:對任意的x∈R,都有x3-x2+1<0,則¬p為( 。
A.不存在x∈R,使得x3-x2+1<0B.存在x∈R,使得x3-x2+1<0
C.對任意的x∈R,都有x3-x2+1≥0D.存在x∈R,使得x3-x2+1≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如圖,小明同學(xué)在山頂A處觀測到,一輛汽車在一條水平的公路上沿直線勻速行駛,小明在A處測得公路上B,C兩點(diǎn)的俯角分別為30°,45°,且∠BAC=135°.若山高AD=100m,汽車從B點(diǎn)到C點(diǎn)歷時14s,則這輛汽車的速度為22.6m/s(精確到0.1)參考數(shù)據(jù):$\sqrt{2}$≈1.414,$\sqrt{5}$≈2.236.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知i為虛數(shù)單位,若復(fù)數(shù)z滿足(1-i)z=1+i,則|z|=( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.為了解甲、乙兩個教學(xué)班級(每班學(xué)生數(shù)均為50人)的教學(xué)效果,期末考試后,對甲、乙兩個班級的學(xué)生成績進(jìn)行統(tǒng)計分析,畫如圖甲班學(xué)生布線頻率分布直方圖和乙班學(xué)生成績頻數(shù)分布表,記成績不低于80分為優(yōu)秀.
(1)根據(jù)頻率分布直方圖及頻數(shù)分布表,填寫下面2×2列聯(lián)表,并判斷有多大的把握認(rèn)為:“成績優(yōu)秀”與所在教學(xué)班級有關(guān).
甲班乙班總計
成績優(yōu)秀28   2048  
成績不優(yōu)秀223052
總計5050100
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.250.150.100.050.025
k1.3222.0722.7063.8405.024
(2)在甲、乙兩個班成績不及格(低于60分)的學(xué)生中任選兩人,記其中甲班的學(xué)生人數(shù)為ξ,求ξ的概率分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.己知函數(shù)f(x)=(x+l)lnx-ax+a (a為正實(shí)數(shù),且為常數(shù))
(1)若f(x)在(0,+∞)上單調(diào)遞增,求a的取值范圍;
(2)若不等式(x-1)f(x)≥0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,過點(diǎn)F1作垂直于x軸的直線交橢圓C于M,N兩點(diǎn),若|MN|=3,且橢圓C上的離心率為$\frac{1}{2}$.
(I)求橢圓C的方程;
(Ⅱ)若直線AB的方程為3x+ty-3=0,且與橢圓C交于A,B兩點(diǎn),證明:$\frac{1}{|A{F}_{2}|}$+$\frac{1}{|B{F}_{2}|}$是定值.

查看答案和解析>>

同步練習(xí)冊答案