5.已知矩陣M=$|\begin{array}{l}{1}&{a}\\&{1}\end{array}|$,N=$|\begin{array}{l}{c}&{2}\\{0}&qaudbnw\end{array}|$,若MN=$|\begin{array}{l}{1}&{0}\\{0}&{1}\end{array}|$,求實數(shù)a,b,c,d的值.

分析 根據(jù)矩陣的乘法,列方程組,即可求得實數(shù)a,b,c,d的值.

解答 解:由$MN=[{\begin{array}{l}1&a\\ b&1\end{array}}][{\begin{array}{l}c&2\\ 0&d\end{array}}]=[{\begin{array}{l}c&{2+ad}\\{bc}&{2b+d}\end{array}}]=[{\begin{array}{l}1&0\\ 0&1\end{array}}]$,
得$\left\{{\begin{array}{l}{c=1}\\{2+ad=0}\\{bc=0}\\{2b+d=1}\end{array}}\right.$,則a=-2,b=0,c=1,d=1,
∴實數(shù)a,b,c,d的值分別為-2,0,1,1.

點(diǎn)評 本題考查矩陣的運(yùn)算,考查矩陣的乘法,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)min{p,q,r}表示p,q,r三者中較小的一個,若函數(shù)f(x)=min{x2,2x,-x+20},則當(dāng)x∈(l,6)時,f(x)的值域是( 。
A.(1,14)B.(2,14)C.(1,16]D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)集合A={x|x2-3x-4≤0},B={-1,4},則A∩B=( 。
A.{x|-x≤x≤4}B.{-1,4}C.(1,4)D.{(-1,4)}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.三棱錐S-ABC中,側(cè)棱SA⊥底面ABC,AB=5,BC=8,∠B=60°,$SA=2\sqrt{5}$,則該三棱錐的外接球的表面積為(  )
A.$\frac{64}{3}π$B.$\frac{256}{3}π$C.$\frac{436}{3}π$D.$\frac{2048}{27}\sqrt{3}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.四面體ABCD各個點(diǎn)都在球面上,AB⊥面BCD,且∠BCD=$\frac{π}{2}$,AB=3,CD=5,BC=4,則該球的體積是$\frac{125\sqrt{2}π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.一個正三棱柱頂點(diǎn)都在球面上,正三棱柱的底面是正三角形,正三角形的邊長是3,正三棱柱的體積是$\frac{{9\sqrt{3}}}{2}$,則球的體積是$\frac{32π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.三棱錐P-ABC中,PA=AB=BC=2,PB=AC=2$\sqrt{2}$,PC=2$\sqrt{3}$,則三棱錐P-ABC的外接球的表面積為12π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗員每天從該生產(chǎn)線上隨機(jī)抽取16個零件,并測量其尺寸(單位:cm)根據(jù)長期生產(chǎn)經(jīng)驗,可以認(rèn)為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件的尺寸服從正態(tài)分布N(μ,σ2),假設(shè)生產(chǎn)狀態(tài)正常,記X表示一天內(nèi)抽取的16個零件中其尺寸在(μ-3σ,μ+3σ)之外的零件數(shù),則P(X≥1)=(  )
附:若隨機(jī)變量Z服從正態(tài)分布N(μ,σ2),則P(μ-3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592.
A.0.0026B.0.0408C.0.0416D.0.9976

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知集合A={x|2x2-9x+4>0},集合B={y|y=-x2+2x,x∈∁RA},集合C={x|m+1<x≤2m-1}.
(1)求集合B;
(2)若A∪C=A,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案