8.若函數(shù)f(x)=ax3+bx2+cx+d(a≠0)圖象的對稱中心為M(x0,f(x0)),記函數(shù)f(x)的導函數(shù)為g(x),則有g'(x0)=0.若函數(shù)f(x)=x3-3x2,則$f(\frac{1}{2017})+f(\frac{2}{2017})+…+f(\frac{4032}{2017})+f(\frac{4033}{2017})$=-8066.

分析 推導出函數(shù)f(x)=x3-3x2的對稱中心為(1,-2),由此能求出$f(\frac{1}{2017})+f(\frac{2}{2017})+…+f(\frac{4032}{2017})+f(\frac{4033}{2017})$的值.

解答 解:∵f(x)=x3-3x2,∴g(x)=3x2-6x,∴g′(x)=6x-6,
∵g′(x0)=6x0-6=0,∴x0=1,∴f(x0)=f(1)=f(1)=1-3=-2,
∴函數(shù)f(x)=x3-3x2的對稱中心為(1,-2),
∴f(x)+f(2-x)=-4,
∴$f(\frac{1}{2017})+f(\frac{2}{2017})+…+f(\frac{4032}{2017})+f(\frac{4033}{2017})$=-4×2016+f(1)=-8064+1-3=-8066.
故答案為:-8066.

點評 本題考查函數(shù)值的求法,是基礎題,解題時要認真審題,注意函數(shù)性質的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

19.2011年,國際數(shù)學協(xié)會正式宣布,將每年的3月14日設為國際數(shù)學節(jié),來源是中國古代數(shù)學家祖沖之的圓周率.為慶祝該節(jié)日,某校舉辦的數(shù)學嘉年華活動中,設計了一個有獎闖關游戲,游戲分為兩個環(huán)節(jié).
第一環(huán)節(jié)“解鎖”:給定6個密碼,只有一個正確,參賽選手從6個密碼中任選一個輸入,每人最多可輸三次,若密碼正確,則解鎖成功,該選手進入第二個環(huán)節(jié),否則直接淘汰.
第二環(huán)節(jié)“闖關”:參賽選手按第一關、第二關、第三關的順序依次闖關,若闖關成功,分別獲得10個、20個、30個學豆的獎勵,游戲還規(guī)定,當選手闖過一關后,可以選擇帶走相應的學豆,結束游戲,也可以選擇繼續(xù)闖下一關,若有任何一關沒有闖關成功,則全部學豆歸零,游戲結束.設選手甲能闖過第一關、第二關、第三關的概率分別為$\frac{4}{5},\frac{3}{4},\frac{2}{3}$,選手選擇繼續(xù)闖關的概率均為$\frac{1}{2}$,且各關之間闖關成功與否互不影響.
(1)求某參賽選手能進入第二環(huán)節(jié)的概率;
(2)設選手甲在第二環(huán)節(jié)中所得學豆總數(shù)為X,求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知復數(shù)z滿足z(1+i)=1-i,則|z|=( 。
A.iB.1C.-iD.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.如圖,在四棱錐P-ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD=$\frac{1}{2}$AD.E為棱AD的中點,異面直線PA與CD所成的角為90°.
(1)在平面PAB內找一點M,使得直線CM∥平面PBE,并說明理由;
(2)若二面角P-CD-A的大小為45°,求二面角P-CE-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{5π}{6}$B.$\frac{4π}{3}$C.$\frac{5π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.某幾何體的三視圖如圖所示,圖中的四邊形都是邊長為4的正方形,兩條虛線互相垂直,則該幾何體的體積是( 。
A.$\frac{176}{3}$B.$\frac{160}{3}$C.$\frac{128}{3}$D.32

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知關于x的不等式|x-3|+|x-m|≥2m的解集為R.
(Ⅰ)求m的最大值;
(Ⅱ)已知a>0,b>0,c>0,且a+b+c=m,求4a2+9b2+c2的最小值及此時a,b,c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.設集合A={-1,0,1,2},B={x|x-1<0},則A∩B=( 。
A.(-1,1)B.(-1,0)C.{-1,0,1}D.{-1,0}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知函數(shù)f(x)=2sin(ωx+φ)(ω>0)的圖象與直線y=b(0<b<2)的三個相鄰交點的橫坐標分別是$\frac{π}{6},\frac{5π}{6},\frac{7π}{6}$,且函數(shù)f(x)在x=$\frac{3π}{2}$處取得最小值,那么|φ|的最小值為( 。
A.$\frac{3π}{2}$B.πC.$\frac{π}{2}$D.$\frac{π}{3}$

查看答案和解析>>

同步練習冊答案