14.若直線Ax+By+C=0左上方的點(diǎn)(x0,y0)滿足Ax0+By0+C>0,則A•B的符號(hào)為負(fù).

分析 判斷出斜率的正負(fù),從而求出AB的符號(hào)即可.

解答 解:首先,只有斜率為正的直線才談得上左上方和右下方(斜率為負(fù)的直線則有左下方和右上方),
斜率為-$\frac{A}{B}$,所以A,B異號(hào),
故答案為:負(fù).

點(diǎn)評(píng) 本題考查二無一次不等式的幾何意義,解題時(shí)要注意特殊值法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.集合A={0,|x|},B={1,0,-1},若A⊆B,則x=±1;A∪B={-1,0,1};∁BA={-1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)z=3+4i(i是虛數(shù)單位),則$|z|+\overline{z}$=8-4i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)x,y∈[$\frac{1}{3}$,1],則y+$\frac{x}{\sqrt{4{x}^{2}({y}^{2}+1)-4x+1}}$的最大值為( 。
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.$\frac{11}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某市組織高一全體學(xué)生參加計(jì)算機(jī)操作比賽,等級(jí)分為1至10分,隨機(jī)調(diào)閱了A、B兩所學(xué)校各60名學(xué)生的成績(jī),得到樣本數(shù)據(jù)如表:
B校樣本數(shù)據(jù)統(tǒng)計(jì)表
成績(jī)(分)12345678910
人數(shù)(個(gè))000912219630
(Ⅰ)計(jì)算兩校樣本數(shù)據(jù)的均值和方差,并根據(jù)所得數(shù)據(jù)進(jìn)行比較.
(Ⅱ) 記事件C為“A校學(xué)生計(jì)算機(jī)優(yōu)秀成績(jī)高于B校學(xué)生計(jì)算機(jī)優(yōu)秀成績(jī)”.假設(shè)7分或7分以上為優(yōu)秀成績(jī),兩校學(xué)生計(jì)算機(jī)成績(jī)相互獨(dú)立.根據(jù)所給樣本數(shù)據(jù),以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,求C的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知點(diǎn)P是雙曲線C1:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)與圓C2:x2+y2=a2+b2的一個(gè)交點(diǎn),且∠PF1F2=60°,其中F1、F2分別為雙曲線C1的左、右焦點(diǎn),則雙曲線C1的離心率為1+$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知定義在[1,+∞)上的函數(shù)f(x)=$\left\{\begin{array}{l}{4-|8x-12|,1≤x≤2}\\{\frac{1}{2}f(\frac{x}{2}),x>2}\end{array}\right.$,則其圖象上與函數(shù)g(x)=log6(-x)圖象上關(guān)于y軸對(duì)稱的點(diǎn)共有(  )組.
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知冪函數(shù)y=xa,a∈{-2,-1,-$\frac{1}{2}$,$\frac{1}{3}$,$\frac{1}{2}$,1,2,3},其中奇函數(shù)的個(gè)數(shù)有( 。
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.計(jì)算下列各式的值:
(1)($\frac{27}{8}$)${\;}^{-\frac{2}{3}}$-($\frac{49}{9}$)${\;}^{\frac{1}{2}}$+(0.2)-2×$\frac{3}{25}$;
(2)$-5{log_9}4+{log_3}\frac{32}{9}-{5^{{{log}_5}3}}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案