如圖,四棱錐P-ABCD中,四邊形ABCD是矩形,PA⊥平面ABCD,且AP=
5
,AB=4,BC=2,點M為PC中點,若PD上存在一點N使得BM∥平面ACN,求PN長度
 
考點:點、線、面間的距離計算
專題:計算題,空間位置關(guān)系與距離
分析:連接AC,BD,AC∩BD=O,取MD中點E,連接CN與PD交于N,取PN中點F,連接MF,則BM∥平面ACN.證明F,N為PD的三等分點,即可得出結(jié)論.
解答: 解:如圖所示,連接AC,BD,AC∩BD=O,
取MD中點E,連接CN與PD交于N,取PN中點F,連接MF,則
∵BM∥OE,BM?平面ACN,OE?平面ACN,
∴BM∥平面ACN.
∵M為PC中點,F(xiàn)為PN中點,
∴MF∥CN,
∵E為MD中點,
∴N為DF中點,
∵PA=
5
,BC=2,四邊形ABCD是矩形,PA⊥平面ABCD,
∴PD=
5+4
=3,
∴PN=2,
故答案為:2.
點評:本題考查直線與平面平行的判定,考查學生的計算能力,確定F,N為PD的三等分點是關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若角α與角β的終邊關(guān)于原點成中心對稱,則α與β的關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(ax2+bx+c)ex在x=1處取極值,且在點(0,f(0))處的切線方程為4x-y+5=0
(1)求a,b,c的值
(2)求函數(shù)f(x)的單調(diào)區(qū)間,并指出f(x)在x=1處取值是極大值還是極小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

二直線mx+3y+3=0,2x+(m-1)y+2=0平行,則實數(shù)m的值為( 。
A、3或-2B、-3或2
C、3D、-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在三棱柱ABC-A1B1C1中,底面為正三角形,AA1⊥平面ABC,D,E,F(xiàn)分別為BC,B1C1,A1B1的中點.
(1)求證:BC⊥A1D;
(2)求證:平面BEF∥平面DA1C1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,橢圓的中心在原點,焦點F1、F2在x軸上,A、B是橢圓的頂點,P是橢圓上一點,且
PF1⊥x軸,PF2∥AB,則此橢圓的離心率是(  )
A、
1
2
B、
1
3
C、
5
5
D、
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若角θ的終邊與168°角的終邊相同,求在0°~360°內(nèi)終邊與
θ
3
角的終邊相同的角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在多面體ABCDEF中,四邊形ABCD是正方形,EF∥AB,EF⊥FB,AB=2EF=2,∠BFC=90°,BF=FC,H為BC的中點.
(Ⅰ)求證:FH∥平面EDB;
(Ⅱ)求證:AC⊥平面EDB;
(Ⅲ)求二面角B-DE-C的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x|x2-3|,x∈[0,m],其中m∈R,當函數(shù)f(x)的值域為[0,2]時,則實數(shù)m的取值范圍
 

查看答案和解析>>

同步練習冊答案