分析 (1)由向量垂直的條件和向量的數(shù)量積運算列出式子,由正弦定理、兩角和的正弦公式化簡后,由內角的范圍和特殊角的三角函數(shù)值求出A;
(2)由正弦定理化簡sinC=3sinB,由a、A的值和余弦定理列出方程,聯(lián)立方程后求出b、c的值,代入三角形的面積公式可求出△ABC的面積S.
解答 解:(1)∵$\overrightarrow{m}$=(2c-b,-a),$\overrightarrow{n}$=(cosA,cosB),且$\overrightarrow{m}$⊥$\overrightarrow{n}$,
∴(2c-b)cosA-acosB=0,
在△ABC中,由正弦定理得,(2sinC-sinB)cosA-sinAcosB=0,
∴2sinCcosA-sin(A+B)=0,
由sin(A+B)=sinC≠0得,2cosA-1=0,則cosA=$\frac{1}{2}$,
由0<A<π得,A=$\frac{π}{3}$;
(2)∵sinC=3sinB,∴由正弦定理得c=3b,①
又a=$\sqrt{7}$,A=$\frac{π}{3}$,由余弦定理得a2=b2+c2-2bccosA,
∴7=b2+c2-bc,②
由①②得,b=1、c=3,
∴△ABC的面積S=$\frac{1}{2}bcsinA$=$\frac{1}{2}×1×3×\frac{\sqrt{3}}{2}$=$\frac{3\sqrt{3}}{4}$.
點評 本題考查正弦定理、余弦定理的綜合應用,兩個向量垂直的性質,兩個向量的數(shù)量積公式的應用,以及根據三角函數(shù)的值求角,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1,0) | B. | (0,-1) | C. | (0,1) | D. | (-1,0) |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com