復(fù)數(shù)z1=1+2i,z2=-2+i,z3=-1-2i,它們?cè)趶?fù)平面上的對(duì)應(yīng)點(diǎn)是一個(gè)正方形的三個(gè)頂點(diǎn),求這個(gè)正方形的第四個(gè)頂點(diǎn)對(duì)應(yīng)的復(fù)數(shù)。

解:設(shè)復(fù)數(shù)z1、z2、z3所對(duì)應(yīng)的點(diǎn)分別為A、B、 C,正方形的第四個(gè)頂點(diǎn)D對(duì)應(yīng)的復(fù)數(shù)為x+yi(x,y∈R),
于是
=(x+yi)-(1+2i)
=(x-1)+(y-2)i,

= (-1-2i)-(-2+i)
=1-3i,

即(x-1)+(y-2)i=1-3i,

解得,
故點(diǎn)D對(duì)應(yīng)的復(fù)數(shù)為2-i。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z1=1+2i,z2=1+ai(i是虛數(shù)單位),若z1•z2為純虛數(shù),則實(shí)數(shù)a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z1=1+2i,z2=1-i,那么z=z1+z2在復(fù)平面上對(duì)應(yīng)的點(diǎn)位于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)復(fù)數(shù)z1=1+2i,z2=1+i,記復(fù)數(shù)z=
z1
z2
,則復(fù)數(shù)z的共軛復(fù)數(shù)
.
z
在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)位于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)復(fù)數(shù)z1=1-2i,z2=x+i(x∈R),若z1•z2為實(shí)數(shù),則x=
1
2
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•江蘇二模)若復(fù)數(shù)z1=1-2i,z2=i,則|z1+z2|=
2
2

查看答案和解析>>

同步練習(xí)冊(cè)答案