分析 由B對應的復數求出B的坐標,得到OB中點的坐標,設出C(x,y),求得$\overrightarrow{MC}=(x-\frac{1}{2},y-1)$,結合$\overrightarrow{MC}⊥\overrightarrow{MB}$及|$\overrightarrow{MC}$|列方程組求得C的坐標,進一步得到$\overrightarrow{BC}$的坐標得答案.
解答 解:如圖,
∵B對應的復數為1+2i,
∴OB中點為M($\frac{1}{2},1$)
設C(x,y),則$\overrightarrow{MB}$=($\frac{1}{2},1$),
$\overrightarrow{MC}=(x-\frac{1}{2},y-1)$,
由$\overrightarrow{MB}•\overrightarrow{MC}=(x-\frac{1}{2},y-1)•(\frac{1}{2},1)=0$,
得2x+4y-5=0,①
又$|\overrightarrow{MC}|=\sqrt{(x-\frac{1}{2})^{2}+(y-1)^{2}}=\frac{\sqrt{5}}{2}$,
得$(x-\frac{1}{2})^{2}+(y-1)^{2}=\frac{5}{4}$,②
聯(lián)立①②解得:$\left\{\begin{array}{l}{x=-\frac{1}{2}}\\{y=\frac{3}{2}}\end{array}\right.$或$\left\{\begin{array}{l}{x=\frac{3}{2}}\\{y=\frac{1}{2}}\end{array}\right.$,
由圖結合已知可得,C的坐標為($-\frac{1}{2},\frac{3}{2}$),
∴$\overrightarrow{BC}=(-\frac{3}{2},-\frac{1}{2})$,
∴$\overrightarrow{BC}$所對應的復數z=$-\frac{3}{2}-\frac{1}{2}i$.
故答案為:$-\frac{3}{2}-\frac{1}{2}i$.
點評 本題考查復數的代數表示法及其幾何意義,考查了平面向量的坐標運算,體現(xiàn)了數形結合的解題思想方法,是中檔題.
科目:高中數學 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $-\frac{7}{4}$ | B. | 6 | C. | -10 | D. | $-\frac{15}{8}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com