已知在一個(gè)120°的二面角的棱上有兩個(gè)點(diǎn)A、B,AC、BD分別是在這個(gè)二面角的兩個(gè)半平面內(nèi)且垂直于AB的線段,又AB=4cm,AC=6cm,BD=8cm,則CD的長(zhǎng)為(  )
A、2
17
cm
B、
154
cm
C、2
41
cm
D、4
10
cm
考點(diǎn):向量在幾何中的應(yīng)用,平面向量數(shù)量積的坐標(biāo)表示、模、夾角,多面體和旋轉(zhuǎn)體表面上的最短距離問(wèn)題,與二面角有關(guān)的立體幾何綜合題
專(zhuān)題:計(jì)算題,平面向量及應(yīng)用,空間位置關(guān)系與距離
分析:由已知可得
CD
=
CA
+
AB
+
BD
,
CA
AB
=0,
AB
BD
=0
,利用數(shù)量積的性質(zhì)即可得出.
解答: 解:由條件,知
CA
AB
=0,
AB
BD
=0
CD
=
CA
+
AB
+
BD

所以|
CD
|2
=|
CA
|2+|
AB
|2+|
BD
|2
+2
CA
AB
+2
AB
BD
+2
CA
BD

=62+42+82+2×6×8cos60°=164
所以CD=2
41
cm,
故選C.
點(diǎn)評(píng):本題考查面面角,考查空間距離的計(jì)算,熟練掌握向量的運(yùn)算和數(shù)量積運(yùn)算是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
(1)若
a
b
=
a
c
,則
b
=
c
;
(2)對(duì)空間任意點(diǎn)O與不共線的三點(diǎn)A,B,C,若
OP
=x
OA
+y
OB
+z
OC
(x,y,z∈R),則P,A,B,C四點(diǎn)共面;
(3)“曲線C上的點(diǎn)的坐標(biāo)都是方程f(x,y)=0的解”是“曲線C的方程是f(x,y)=0”的必要條件;
(4)(
c
b
a
-(
a
c
b
c
垂直.
寫(xiě)出以上命題為真命題的序號(hào)
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

己知某幾何體的三視圖如圖所示,則該幾何體的體積是( 。
A、
2
3
3
B、
2
3
3
+2π
C、2
3
+2π
D、2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F是雙曲線
x2
3a2
-
y2
a2
=1(a>0)
的右焦點(diǎn),O為坐標(biāo)原點(diǎn),設(shè)P是雙曲線C上一點(diǎn),則∠POF的大小不可能是( 。
A、15°B、25°
C、60°D、165°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=ln(x+1)與y=
1
x
的圖象交點(diǎn)的橫坐標(biāo)所在區(qū)間為( 。
A、(0,1)
B、(1,2)
C、(2,3)
D、(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲乙丙三人獨(dú)立地破譯一份密碼,他們每人譯出此密碼的概率為0.25,假定隨機(jī)變量x表示譯出此密碼的人數(shù),求E(x),D(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,點(diǎn)E是棱DD1上的動(dòng)點(diǎn),F(xiàn),G分別是BD,BB1的中點(diǎn).
(1)求證:EF⊥CF.
(2)當(dāng)點(diǎn)E是棱DD1上的中點(diǎn)時(shí),求異面直線EF與CG所成角的余弦值.
(3)當(dāng)二面角E-CF-D達(dá)到最大時(shí),求其余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖直角梯形OABC中,∠COA=∠OAB=90°,OC=2,OA=AB=1,SO⊥平面OABC,SO=1,分別以O(shè)C,OA,OS為x軸、y軸、z軸建立直角坐標(biāo)系O-xyz.
(Ⅰ)求
SC
OB
夾角的余弦值;
(Ⅱ)求OC與平面SBC夾角的正弦值;
(Ⅲ)求二面角S-BC-O.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三棱柱ABC-A1B1C1的底面為直角三角形,則棱與底面垂直,如圖所示,D是棱CC1的中點(diǎn),且∠ACB=90°,BC=1,AC=
3
,AA1=
6

(Ⅰ)證明:A1D⊥平面AB1C1;
(Ⅱ)求二面角B-AB1-C1的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案