已知f(x)是定義在R上的偶函數(shù),且在(-∞,0]是減函數(shù),設(shè)a=f(log26),b=f(log
1
2
3)
,c=f(
1
3
)
則a,b,c的大小關(guān)系是(  )
A、c<b<a
B、b<c<a
C、b<a<c
D、a<b<c
考點(diǎn):奇偶性與單調(diào)性的綜合
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)單調(diào)性和奇偶性之間的關(guān)系,利用對數(shù)的大小關(guān)系即可得到結(jié)論.
解答: 解:∵f(x)是定義在R上的偶函數(shù),且在(-∞,0]是減函數(shù),
∴f(x)在[0,+∞)是增函數(shù),
b=f(log
1
2
3)
=f(-log23)=f(log23),
∵log26>log23>1
1
3
,
∴f(log26)>f(log23)>f(
1
3
),
即a>b>c,
故選:A.
點(diǎn)評:本題主要考查函數(shù)值的大小比較,利用單調(diào)性和奇偶性之間的關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知α是銳角,
a
=(
3
4
,sinα),
b
=(cosα,
1
3
),且
a
b
,則α為( 。
A、15°B、45°
C、75°D、15°或75°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC,角A、B、C所對應(yīng)的邊分別為a,b,c,且sinA+sinB=cosA+cosB,則△ABC是( 。
A、等腰三角形
B、直角三角形
C、等腰直角三角形
D、等腰或直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個幾何體的三視圖如圖所示,其中正(主)視圖中△ABC是邊長為2的正三角形,俯視圖的邊界為正六邊形,那么該幾何體的側(cè))視圖的面積為( 。
A、
1
2
B、1
C、
3
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y∈R+,且x+y=3,則
1
x
+
1
y
的最小值為( 。
A、4
B、
4
3
C、
3
4
D、
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin(2x+
π
3
)+1,
(Ⅰ)用“五點(diǎn)法”畫出該函數(shù)在一個周期內(nèi)的簡圖;
(Ⅱ)寫出該函數(shù)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過原點(diǎn)的二次函數(shù)y=f(x)的頂點(diǎn)為(-1,-1)
(1)求y=f(x)的解析式;
(2)求h(x)=f(lgx),(x>0)的單調(diào)區(qū)間;
(3)若g(x)=
f(x)+k
x2+x+1
,x∈R
的值域?yàn)?span id="7wlkr22" class="MathJye">[
2
3
,2],求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前4項(xiàng)和為10,且a2,a3,a7成等比數(shù)列,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某地一天從4~16時的溫度變化曲線近似滿足函數(shù)y=10sin(
π
8
x-
4
)+20,x∈[4,16].
(Ⅰ)求該地區(qū)這一段時間內(nèi)溫度的最大溫差;
(Ⅱ)若有一種細(xì)菌在15℃到25℃之間可以生存,那么在這段時間內(nèi),該細(xì)菌最多能生存多長時間?

查看答案和解析>>

同步練習(xí)冊答案