13.如圖,在A,B,C,D,E五個區(qū)域中栽種3種植物,要求同一區(qū)域中只種1種植物,相鄰兩區(qū)域所種植物不同,則不同的栽種方法的總數(shù)為( 。
A.21B.24C.30D.48

分析 同一區(qū)域中只種1種植物,相鄰兩區(qū)域所種植物不同,分三類研究,根據(jù)分類計數(shù)原理可得.

解答 解:(1)A、D相同,A有3種選擇,B有2種選擇,C有1種選擇,E有2種選擇,共有3×2×1×2=12種,
(2)A、D不同,A,C相同,A有3種選擇,B有2種選擇,D有2種選擇,E有1種選擇,共有3×2×2×1=12種,
(3)A、D不同,A,C不同,A有3種選擇,B有2種選擇,C有1種選擇,D有1種選擇,E有1種選擇,共有3×2×1×1×1=6種,
根據(jù)分類計數(shù)原理可得,共有12+12+6=30種,
故選:C.

點評 本題考查了區(qū)域涂色、種植花草作物是一類題目.分類要全要細(xì).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合U=[0,5],A={x|x2-2x-3<0,x∈N},B=(0,1)∪(1,3)∪(3,5),則A∩(∁RB)=(  )
A.{0,1,2)B.{-1,0,1,2,3}C.{0,1}D.{2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)函數(shù)f(x)=ax+3-|2x-1|.
(Ⅰ)若a=1,解不等式f(x)≤2;
(Ⅱ)若函數(shù)有最大值,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)函數(shù)f(x)=|2x-1|-|x+2|.
(1)解不等式:f(x)>0;
(2)若f(x)+3|x+2|≥|a-1|對一切實數(shù)x均成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知:$x=\frac{3}{{\sqrt{5}+\sqrt{2}}}$,則$\sqrt{2}$可用含x的有理系數(shù)三次多項式來表示為:$\sqrt{2}$=$-\frac{1}{6}{x^3}+\frac{11}{6}x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.${C}_{2014}^{0}$•20+${C}_{2014}^{2}$•22+…+${C}_{2014}^{2014}$•22014=$\frac{{3}^{2014}+1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)函數(shù)f(x)=Asin(2x+φ),其中角φ的終邊經(jīng)過點P(-l,1),且0<φ<π,f($\frac{π}{2}$)=-2,則φ=$\frac{3π}{4}$,A=2$\sqrt{2}$,f(x)在[-$\frac{π}{2}$,$\frac{π}{2}$]上的單調(diào)減區(qū)間為[-$\frac{π}{8}$,$\frac{3π}{8}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.求和:
(1)$\sum_{k=1}^{10}$(3+2k);
(2)(2+$\frac{1}{3}$)+(4+$\frac{1}{9}$)+(6+$\frac{1}{27}$)+…+(2n+$\frac{1}{{3}^{n}}$);
(3)(a-1)+(a2-1)+(a3-1)+…+(an-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.不等式|3x-2|>1的解集為( 。
A.(-∞,-$\frac{1}{3}$)∪(1,+∞)B.(-$\frac{1}{3}$,1)C.(-∞,$\frac{1}{3}$)∪(1,+∞)D.($\frac{1}{3}$,1)

查看答案和解析>>

同步練習(xí)冊答案