A. | 0個 | B. | 1個 | C. | 2個 | D. | 3個 |
分析 求導(dǎo)f′(x)=$\frac{2{x}^{2}+x-1}{x}$=$\frac{(2x-1)(x+1)}{x}$,從而確定函數(shù)的單調(diào)性及極值,從而解得.
解答 解:∵f(x)=x2+x-lnx的定義域?yàn)椋?,+∞),
f′(x)=$\frac{2{x}^{2}+x-1}{x}$=$\frac{(2x-1)(x+1)}{x}$,
故f(x)在(0,$\frac{1}{2}$)上是減函數(shù),在($\frac{1}{2}$,+∞)上是增函數(shù);
且f($\frac{1}{2}$)=$\frac{1}{4}$+$\frac{1}{2}$-ln$\frac{1}{2}$>0,
故函數(shù)f(x)=x2+x-lnx沒有零點(diǎn);
故選:A.
點(diǎn)評 本題考查了導(dǎo)數(shù)的綜合應(yīng)用及函數(shù)的極值的求法與應(yīng)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,2) | B. | (2,2$\sqrt{2}$) | C. | (3,2$\sqrt{3}$) | D. | (4,±4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{5}+1}{2}$ | B. | $\frac{\sqrt{3}}{2}$+1 | C. | $\frac{\sqrt{3}+1}{2}$ | D. | $\frac{\sqrt{2}+1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com