在區(qū)間[0,2]上隨機取兩個數(shù)x,y其中滿足y≥2x的概率是( 。
A、
1
2
B、
1
4
C、
1
8
D、
1
16
考點:幾何概型
專題:計算題,概率與統(tǒng)計
分析:該題涉及兩個變量,故是與面積有關(guān)的幾何概型,分別表示出滿足條件的面積和整個區(qū)域的面積,最后利用概率公式解之即可.
解答: 解:在區(qū)間[0,2]上隨機取兩個數(shù)x,y,對應(yīng)區(qū)域的面積為4,
滿足y≥2x,對應(yīng)區(qū)域的面積為
1
2
×1×2
=1,
∴所求的概率為
1
4

故選:B.
點評:本題主要考查了與面積有關(guān)的幾何概率的求解,解題的關(guān)鍵是準確求出區(qū)域的面積,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列有關(guān)三段論推理“自然數(shù)都是整數(shù),4是自然數(shù),所以4是整數(shù)”的說法正確的是( 。
A、推理正確
B、推理形式不正確
C、大前提錯誤
D、小前提錯誤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將“平面α內(nèi)有一條直線l,則這條直線l上的點P必在平面內(nèi)”改寫成符號語言,正確的是( 。
A、
l∈α
P∈l
⇒P∈α
B、
l?α
P?l
⇒P?α
C、
l?α
P∈l
⇒P∈α
D、
l∈α
P?l
⇒P∈α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個函數(shù)中在(0,+∞)上為增函數(shù)的是(  )
A、f(x)=3-x
B、f(x)=(x-1)2
C、f(x)=
1
x
D、f(x)=(
1
2
-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中,a1=2,a5=18,則a2a3a4等于( 。
A、36B、216
C、±36D、±216

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,CD是京九鐵路線上的一條穿山隧道,開鑿前,在CD所在水平面上的山頂外取點A,B,并測得四邊形ABCD中,∠ABC=
π
3
,∠BAD=
2
3
π,AB=BC=400米,AD=2米,求應(yīng)開鑿的隧道CD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

眾所周知,大包裝商品的成本要比小包裝商品的成本低.某種品牌的餅干,其100克裝的售價為1.6元,其200克裝的售價為3元,假定該商品的售價由三部分組成:生產(chǎn)成本(a元)、包裝成本(b元)、利潤.生產(chǎn)成本(a元)與餅干重量成正比,包裝成本(b元)與餅干重量的算術(shù)平方根(估計值)成正比,利潤率為20%,試寫出該種餅干1000克裝的合理售價.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3x+3-x
(1)判斷函數(shù)的奇偶性;
(2)求函數(shù)的單調(diào)增區(qū)間,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
xlnx2,g(x)=-x2+|a|x-3

(1)求函數(shù)f(x)在[t,t+2](t>0)上的最小值;
(2)對一切x∈(0,+∞),f(x)≥
1
2
g(x)
恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案