19.直線l:2x-y+2=0過橢圓左焦點F1和一個頂點B,則該橢圓的離心率為(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{{\sqrt{5}}}{5}$D.$\frac{{2\sqrt{5}}}{5}$

分析 分別令直線方程中y=0和x=0,進而求得b和c,進而根據(jù)b,c和a的關(guān)系求得a,則橢圓的離心率可得.

解答 解:∵直線l:2x-y+2=0中,令x=0,得y=2;令y=0,得x=-1,
直線l:2x-y+2=0過橢圓左焦點F1和一個頂點B,
∴橢圓左焦點F1(-1,0),頂點B(0,2),
∴c=1,b=2,a=$\sqrt{1+4}$=$\sqrt{5}$,
∴該橢圓的離心率為e=$\frac{c}{a}$=$\frac{1}{\sqrt{5}}$=$\frac{\sqrt{5}}{5}$.
故選:C.

點評 本題考查橢圓的離心率的求法,是中檔題,解題時要認(rèn)真審題,注意橢圓的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知非零向量$\overrightarrow{a}$,$\overrightarrow$的夾角為45°,對于任意實數(shù)t,|$\overrightarrow$+t$\overrightarrow{a}$|的最小值$\sqrt{10}$,則|$\overrightarrow$|=2$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.頂點在單位圓上的△ABC中,角A,B,C所對的邊分為a、b、c,若sinA=$\frac{\sqrt{3}}{2}$,b2+c2=4,則S△ABC=$\frac{\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓Γ的中心在原點,焦距為2,且長軸長是短軸長的$\sqrt{2}$倍.
(Ⅰ)求橢圓Γ的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)P(2,0),過橢圓Γ左焦點F的直線l交Γ于A、B兩點,若對滿足條件的任意直線l,不等式$\overrightarrow{PA}$•$\overrightarrow{PB}$≤λ(λ∈R)恒成立,求λ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知在正三陵拄A1B1C1-ABC(側(cè)棱垂直于底面,且底面是正三角形)中,D、E分別是棱BC、CC1的中點,AB=AA1=2.
(1)證明:BE⊥AB1;
(2)求二面角B-AB1-D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知橢圓$\frac{x^2}{16}+\frac{y^2}{4}=1$過點P(-2,1)作弦且弦被P平分,則此弦所在的直線方程為( 。
A.2x-y-3=0B.2x-y-1=0C.x-2y-4=0D.x-2y+4=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦點分別為F1,F(xiàn)2,P是橢圓上的點.若PF1⊥F1F2,∠F1PF2=60°,則橢圓的離心率為$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在四棱錐A-BCDE中,底面BCDE為平行四邊形,且△ABE是以∠BAE為直角的等腰直角三角形,O為BE中點,且CO⊥CD,CO=$\frac{\sqrt{2}}{2}$a,AB=a.
(1)證明:CD⊥平面AOC;
(2)若側(cè)面ABE⊥底面BCDE,且四棱錐A-BCDE的體積為36$\sqrt{2}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)α為銳角,且cos(α+$\frac{π}{6}$)=$\frac{3\sqrt{10}}{10}$,tan(α+β)=$\frac{2}{5}$.
(1)求sin(2α+$\frac{π}{6}$)的值;
(2)求tan(2β-$\frac{π}{3}$)的值.

查看答案和解析>>

同步練習(xí)冊答案