A. | 2x-y-3=0 | B. | 2x-y-1=0 | C. | x-2y-4=0 | D. | x-2y+4=0 |
分析 判斷點P在橢圓內(nèi),設(shè)弦的端點的坐標(biāo)為(x1,y1),(x2,y2),代入橢圓方程,運(yùn)用作差法,結(jié)合直線的斜率公式和斜率公式,可得斜率,再由點斜式方程即可得到所求直線方程.
解答 解:將P(-2,1)代入橢圓方程可得:$\frac{4}{16}$+$\frac{1}{4}$<1,即點P在橢圓內(nèi),
設(shè)弦的端點的坐標(biāo)為(x1,y1),(x2,y2),
可得$\frac{{{x}_{1}}^{2}}{16}$+$\frac{{{y}_{1}}^{2}}{4}$=1,$\frac{{{x}_{2}}^{2}}{16}$+$\frac{{{y}_{2}}^{2}}{4}$=1,
相減可得$\frac{({x}_{1}-{x}_{2})({x}_{1}+{x}_{2})}{16}$+$\frac{({y}_{1}-{y}_{2})({y}_{1}+{y}_{2})}{4}$=0,
則弦所在直線的斜率為$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=-$\frac{{x}_{1}+{x}_{2}}{4({y}_{1}+{y}_{2})}$,
由中點坐標(biāo)公式可得,x1+x2=-4,y1+y2=2,
可得斜率為-$\frac{-4}{4×2}$=$\frac{1}{2}$,
即有直線的方程為y-1=$\frac{1}{2}$(x+2),
即為x-2y+4=0.
故選:D.
點評 本題考查橢圓的方程的運(yùn)用,直線方程的求法,注意運(yùn)用點差法,以及中點坐標(biāo)公式,考查運(yùn)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | -3 | C. | $\frac{1}{3}$ | D. | -$\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{{\sqrt{5}}}{5}$ | D. | $\frac{{2\sqrt{5}}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | 2 | C. | $\frac{5}{2}$ | D. | 3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com