分析 (1)已知等式利用正弦定理化簡(jiǎn),根據(jù)sinB不為0求出sinC的值,由C為銳角求出C的度數(shù)即可;
(2)由(1)及余弦定理可求c的值,從而根據(jù)余弦定理可求cosB,由平面向量數(shù)量積的運(yùn)算即可得解.
解答 解:(1)由正弦定理$\frac{a}{sinA}=\frac{sinB}=\frac{c}{sinC}$,及$\sqrt{3}$b=2csinB,
得:$\sqrt{3}$sinB=2sinCsinB,
∵sinB≠0,∴sinC=$\frac{\sqrt{3}}{2}$,
∵C為銳角,
∴C=60°;
(2)∵由余弦定理可得:c2=a2+b2-2abcosC=25+64-2×5×8×cos60°=49,可得:c=7.
∴由余弦定理可得:cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{25+49-64}{2×5×7}$=$\frac{1}{7}$,
∴$\overrightarrow{BA}$•$\overrightarrow{BC}$=7×$5×\frac{1}{7}$=5.
點(diǎn)評(píng) 此題考查了正弦、余弦定理,平面向量數(shù)量積的運(yùn)算,以及特殊角的三角函數(shù)值,熟練掌握定理是解本題的關(guān)鍵,屬于基本知識(shí)的考查.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | n≤2014 | B. | n≤2015 | C. | n>2014 | D. | n>2015 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 8 | B. | 4 | C. | $\frac{{8\sqrt{3}}}{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com