A. | 2+$\sqrt{3}$ | B. | 5+2$\sqrt{6}$ | C. | 8+$\sqrt{15}$ | D. | 2$\sqrt{3}$ |
分析 畫出可行域,利用目標(biāo)函數(shù)去最小值得到a,b的等式,利用基本不等式求解$\frac{1}{a}$+$\frac{3}$的最小值.
解答 解:約束條件對(duì)應(yīng)的 區(qū)域如圖:目標(biāo)函數(shù)z=ax+by(a>0,b>0)經(jīng)過C時(shí)取最小值為2,
所以a+b=2,
則$\frac{1}{a}$+$\frac{3}$=$\frac{1}{2}$($\frac{1}{a}$+$\frac{3}$)(a+b)=$\frac{1}{2}$(4+$\frac{a}+\frac{3a}$)
≥2+$\sqrt{\frac{a}•\frac{3a}}$=2+$\sqrt{3}$;
當(dāng)且僅當(dāng)$\sqrt{3}$a=b,并且a+b=2時(shí)等號(hào)成立;
故選A.
點(diǎn)評(píng) 本題考查了簡單線性規(guī)劃問題和基本不等式的應(yīng)用求最值;關(guān)鍵是求出a+b=2,對(duì)所求變形為基本不等式的形式求最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,$\frac{1}{3}$) | B. | [$\frac{1}{3}$,$\frac{1}{e}$) | C. | ($\frac{1}{e}$,$\frac{4}{3}$] | D. | (-∞,0]∪[$\frac{4}{3}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | -1 | C. | -2 | D. | -3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | $\sqrt{5}$ | C. | 9 | D. | 3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com