13.函數(shù)y=-2x2+1的單調(diào)遞增區(qū)間為( 。
A.(-∞,0]B.(0,+∞)C.[1,+∞)D.(-∞,+∞)

分析 根據(jù)二次函數(shù)的性質(zhì)判斷函數(shù)的單調(diào)性即可.

解答 解:函數(shù)y=-2x2+1開(kāi)口向下,
對(duì)稱(chēng)軸是x=0,函數(shù)在(-∞,0]遞增,
故選:A.

點(diǎn)評(píng) 本題考查了二次函數(shù)的性質(zhì),根據(jù)函數(shù)的對(duì)稱(chēng)軸和開(kāi)口方向判斷函數(shù)的單調(diào)性即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.函數(shù)$y=\sqrt{x-1}$與y=ln(2-x)的定義域分別為M、N,則M∩N=( 。
A.(1,2]B.[1,2)C.(-∞,1]∪(2,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知集合A={x|x2-2x≤0},B={y|y=log2(x+2),x∈A},則A∩B為( 。
A.(0,1)B.[0,1]C.(1,2)D.[1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.下列函數(shù)為偶函數(shù)的是(  )
A.f(x)=x-1B.f(x)=x3+xC.f(x)=2x-2-xD.f(x)=2x+2-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.對(duì)于由直線(xiàn)x=0,x=1,y=0和曲線(xiàn)y=x2所圍成的曲邊梯形,當(dāng)把區(qū)間[0,1]等分為10個(gè)小區(qū)間時(shí),曲邊梯形的面積近似等于$\frac{57}{200}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.設(shè)函數(shù)f(x)的圖象與直線(xiàn)x=a,x=b及x軸所圍成圖形的面積稱(chēng)為函數(shù)f(x)在[a,b]上的面積,已知函數(shù)y=sinnx在$[0,\frac{π}{2n}]$上的面積為$\frac{1}{n}$(n∈N*),則函數(shù)y=sin(3x-π)+2在$[\frac{π}{3},\frac{4π}{3}]$上的面積為$2π+\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知f(x)=|2x-1|+ax+2.
( I)當(dāng)a=1時(shí),解不等式f(x)≤4;
(Ⅱ)若函數(shù)f(x)有最小值,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若x>y>1,0<a<b<1,則下列各式中一定正確的是( 。
A.ax<byB.ax>byC.$\frac{lnx}<\frac{lny}{a}$D.$\frac{lnx}>\frac{lny}{a}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知$\overrightarrow a=({3,1}),\overrightarrow b=({1,3-m}),\overrightarrow c=({2m,-1})$,且$\overrightarrow b⊥\overrightarrow c$.
(1)求$|{\overrightarrow a-\overrightarrow b}$|的值;
(2)若$\overrightarrow a∥({\overrightarrow b+λ\overrightarrow c})$,求λ的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案