2.4名男生和3名女生站成-排.要求男生甲不與女生乙相鄰,女生丙不與女生乙相鄰,則不同的排法總數(shù)為2400.

分析 分兩類,第一類,若女生乙在兩端,第二類,若女生乙不兩端,根據(jù)分類計數(shù)原理可得.

解答 解:第一類,若女生乙在兩端,先選1名(除了男生甲和女生丙之外的4人)和女生乙相鄰,其他的任意排,故有A21A41A55=960種,
第二類,若女生乙不兩端,先選2名(除了男生甲和女生丙之外的4人)排在女生乙的兩邊與女生乙相鄰,把這三人捆綁在一起看做一個復(fù)合元素,和另外的4人全排,故有A42A55=1440種,
根據(jù)分類計數(shù)原理可得,共有960+1440=2400種,
故答案為:2400.

點評 本題主要考查排列與組合及兩個基本原理,排列數(shù)公式、組合數(shù)公式的應(yīng)用,注意特殊元素和特殊位置要優(yōu)先排.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{^{2}}$=1,的離心率e=2,若過雙曲線右焦點且與漸近線平行的直線與圓x2+y2+4x=8相切,則雙曲線的方程為( 。
A.x2-$\frac{{y}^{2}}{3}$=1B.$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{6}$=1C.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{9}$=1D.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在數(shù)列{an}中,a1=1,an+1=2an+2n,bn=$\frac{{a}_{n}}{{2}^{n-1}}$,則通項公式an=n•2n-1,bn=n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.△ABC中,a=2bcosc,則這個三角形一定是等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知正數(shù)a,b滿足a+b=2.
(1)求ab的取值范圍;
(2)求ab+$\frac{1}{ab}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知集合A={1,2,a},B={-1,0,1,2,3},則“a=-1”是“A⊆B”的充分不必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.不等式A${\;}_{9}^{x}$>6A${\;}_{9}^{x-2}$(x≥3,x∈N*)的解集為{x|3≤x≤8,x∈N*}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.用反三角函數(shù)值的形式表示下列各式中的x.
(1)sinx=-$\frac{1}{4}$,x∈[-$\frac{π}{2}$,$\frac{π}{2}$]
(2)sinx=$\frac{\sqrt{3}}{3}$,x∈[0,π].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆廣西南寧二中等校高三8月聯(lián)考數(shù)學(xué)(理)試卷(解析版) 題型:選擇題

下邊程序框圖的算法思路源于我國古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”.執(zhí)行該程序框圖,若輸入的分別為8,12,則輸出的( )

A. 4 B.2 C.0 D.14

查看答案和解析>>

同步練習(xí)冊答案