已知p:x2-4x+4-m2>0(m∈R),q:
3
x-1
>1,若?p是?q的必要不充分條件,求實(shí)數(shù)m的取值范圍.
考點(diǎn):必要條件、充分條件與充要條件的判斷
專(zhuān)題:簡(jiǎn)易邏輯
分析:由p:x2-4x+4-m2>0(m∈R),可得|x-2|≥|m|,解得x≥2+|m|,或x≤2-|m|.q:
3
x-1
>1,解得1<x<4.若?p是?q的必要不充分條件,則q是p的必要不充分條件.即可得出.
解答: 解:由p:x2-4x+4-m2>0(m∈R),∴(x-2)2≥m2
∴|x-2|≥|m|,
解得x-2≥|m|,或x-2≤-|m|,
即x≥2+|m|,或x≤2-|m|.
q:
3
x-1
>1,解得1<x<4.
若?p是?q的必要不充分條件,則q是p的必要不充分條件.
則2+|m|<1或2-|m|≥4,
解得:m∈∅.
∴實(shí)數(shù)m的取值范圍是∅.
點(diǎn)評(píng):本題考查了不等式的解法、充分必要條件,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,F(xiàn)1、F2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右兩個(gè)焦點(diǎn),A、B為兩個(gè)頂點(diǎn),該橢圓的離心率為
5
5
,△ABO的面積為
5

(1)求橢圓C的方程和焦點(diǎn)坐標(biāo);
(2)作與AB平行的直線(xiàn)l交橢圓于P、Q兩點(diǎn),|PQ|=
9
5
5
,求直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1、F2是橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn),且離心率e=
1
2
,點(diǎn)P為橢圓上的一個(gè)動(dòng)點(diǎn),△PF1F2的內(nèi)切圓面積的最大值為
3

(1)求橢圓的方程;
(2)若A,B,C,D是橢圓上不重合的四個(gè)點(diǎn),滿(mǎn)足向量
F1A
F1C
共線(xiàn),
F1B
F1D
共線(xiàn),且
AC
BD
=0,求|
AC
|+|
BD
|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在如圖所示的多面體中,四邊形ABCD為正方形,四邊形ADPQ是直角梯形,AD⊥DP,CD⊥平面ADPQ,AB=AQ=
1
2
DP.
(1)求證:PQ⊥平面DCQ;
(2)求二面角B-CQ-P的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)C1:y2=4mx(m>0)的準(zhǔn)線(xiàn)與x軸交于點(diǎn)F1,焦點(diǎn)為F2;橢圓C2以F1,F(xiàn)2為焦點(diǎn),離心率e=
1
2
.設(shè)P是C1,C2的一個(gè)交點(diǎn).
(1)當(dāng)m=1時(shí),求橢圓C2的方程;
(2)在(1)的條件下,直線(xiàn)l過(guò)C2的右焦點(diǎn)F2,與C1交于A(yíng)1,A2兩點(diǎn),且|A1A2|等于△PF1F2的周長(zhǎng),求l的方程;
(3)求所有正實(shí)數(shù)m,使得△PF1F2的邊長(zhǎng)是連續(xù)正整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿(mǎn)足an+1-2an=0且a3+2是a2,a4的等差中項(xiàng),Sn是數(shù)列{an}的前n項(xiàng)和.
(1)求{an}的通項(xiàng)公式;
(2)若bn=anlogan,Sn=b1+b2+b3+…bn,求使Sn+n•2n+1>50成立的正整數(shù)n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的冪函數(shù)f(x)=(m2-m-1)xm中,m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)(m2,m)在平面區(qū)域x-3y+2>0內(nèi),則m的范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,O、A、B是平面上的三點(diǎn),P為線(xiàn)段AB的中垂線(xiàn)上的任意一點(diǎn),若|
OA
|=4,|
OB
|=2,則
OP
•(
OA
-
OB
)等于
 

查看答案和解析>>

同步練習(xí)冊(cè)答案