【題目】已知頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸上的拋物線直線y=2x+1截得的弦長(zhǎng)為 ,求拋物線的方程 .
【答案】y2=﹣4x,或y2=12x
【解析】解:設(shè)直線與拋物線交于A(x1 , y1),B(x2 , y2) 設(shè)拋物線的方程為y2=2px,與直線y=2x+1聯(lián)立,消去y得4x2﹣(2p﹣4)x+1=0,則x1+x2= ,x1x2= .
|AB|= |x1﹣x2|= = ,
化簡(jiǎn)可得p2﹣4p﹣12=0,
∴p=﹣2,或6
∴拋物線方程為y2=﹣4x,或y2=12x.
故答案為:y2=﹣4x,或y2=12x.
設(shè)出拋物線的方程,直線與拋物線方程聯(lián)立消去y,進(jìn)而根據(jù)韋達(dá)定理求得x1+x2 , x1x2的值,利用弦長(zhǎng)公式求得|AB|,由AB= 可求p,則拋物線方程可得.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和Sn , 且an= (n∈N*). (Ⅰ)若數(shù)列{an+t}是等比數(shù)列,求t的值;
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)記bn= + ,求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)盒子中裝有4個(gè)編號(hào)依次為1、2、3、4的球,這4個(gè)球除號(hào)碼外完全相同,先從盒子中隨機(jī)取一個(gè)球,該球的編號(hào)為X,將球放回袋中,然后再?gòu)拇须S機(jī)取一個(gè)球,該球的編號(hào)為Y
(1)列出所有可能結(jié)果.
(2)求事件A=“取出球的號(hào)碼之和小于4”的概率.
(3)求事件B=“編號(hào)X<Y”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某水果店購(gòu)進(jìn)某種水果的成本為20元/kg,經(jīng)過市場(chǎng)調(diào)研發(fā)現(xiàn),這種水果在未來30天的銷售單價(jià)P(元/kg)與時(shí)間t(天)之間的函數(shù)關(guān)系式為 ,銷售量Q(kg)與時(shí)間t(天)的函數(shù)關(guān)系式為Q=﹣2t+120.
(Ⅰ)該水果店哪一天的銷售利潤(rùn)最大?最大利潤(rùn)是多少?
(Ⅱ)為響應(yīng)政府“精準(zhǔn)扶貧”號(hào)召,該店決定每銷售1kg水果就捐贈(zèng)n(n∈N)元給“精準(zhǔn)扶貧”對(duì)象.欲使捐贈(zèng)后不虧損,且利潤(rùn)隨時(shí)間t(t∈N)的增大而增大,求捐贈(zèng)額n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求分別滿足下列條件的直線l的方程:
(1)斜率是 ,且與兩坐標(biāo)軸圍成的三角形的面積是6;
(2)經(jīng)過兩點(diǎn)A(1,0)、B(m,1);
(3)經(jīng)過點(diǎn)(4,-3),且在兩坐標(biāo)軸上的截距的絕對(duì)值相等.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知焦點(diǎn)在x軸上,中心在坐標(biāo)原點(diǎn)的橢圓C的離心率為 ,且過點(diǎn)( ,1). (Ⅰ)求橢圓C的方程;
(Ⅱ)直線l分別切橢圓C與圓M:x2+y2=R2(其中3<R<5)于A、B兩點(diǎn),求|AB|的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2x3+3x2﹣12x+5. (Ⅰ)求曲線y=f(x)在點(diǎn)(0,5)處的切線方程;
(Ⅱ)求函數(shù)f(x)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(﹣1,0),B(1,0),直線AM與直線BM相交于點(diǎn)M,直線AM與直線BM的斜率分別記為kAM與kBM , 且kAMkBM=﹣2 (Ⅰ)求點(diǎn)M的軌跡C的方程;
(Ⅱ)過定點(diǎn)F(0,1)作直線PQ與曲線C交于P,Q兩點(diǎn),△OPQ的面積是否存在最大值?若存在,求出△OPQ面積的最大值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,⊙C的極坐標(biāo)方程為ρ=2 sinθ. (Ⅰ)寫出⊙C的直角坐標(biāo)方程;
(Ⅱ)P為直線l上一動(dòng)點(diǎn),當(dāng)P到圓心C的距離最小時(shí),求P的直角坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com