3.已知i是虛數(shù)單位,m,n∈R,且m+2i=2-ni,則$\frac{m+ni}{m-ni}$的共軛復(fù)數(shù)為i.

分析 利用復(fù)數(shù)相等,求出m,n然后求解復(fù)數(shù)的代數(shù)形式.

解答 解:m,n∈R,且m+2i=2-ni,可得m=2,n=-2,
$\frac{m+ni}{m-ni}$=$\frac{2-2i}{2+2i}$=$\frac{1-i}{1+i}$=$\frac{(1-i)(1-i)}{2}$=-i.
它的共軛復(fù)數(shù)為i.
故答案為:i.

點(diǎn)評 本題考查復(fù)數(shù)的代數(shù)形式混合運(yùn)算,復(fù)數(shù)相等的充要條件,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知曲線y=$\frac{{x}^{2}}{4}$-3lnx的一條切線的斜率為-$\frac{1}{2}$,則切點(diǎn)的橫坐標(biāo)為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)的圖象如圖所示,則f(x)的解析式可能是( 。
A.$f(x)=\frac{{2-{x^2}}}{2x}$B.$f(x)=\frac{sinx}{x^2}$C.$f(x)=-\frac{{{{cos}^2}x}}{x}$D.$f(x)=\frac{cosx}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在平面直角坐標(biāo)系xOy中,已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$過點(diǎn)P(1,1),其一條漸近線方程為$y=\sqrt{2}x$,則該雙曲線的方程為2x2-y2=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=x2-ax-4(a∈R).
(I)若f(x)在[0,2]上單調(diào),求a的取值范圍;
(Ⅱ)若f(x)在區(qū)間[a,a+1]上的最小值為-8,求a的值;
(Ⅲ)若對任意的a∈R,總存在x0∈[1,2],使得|f(x0)|≥m成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x<0}\\{2x-1,x≥0}\end{array}\right.$,若f(f(m))=0,則m=-1或$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知焦點(diǎn)在y軸上的橢圓E的中心是原點(diǎn)O,離心率等于$\frac{\sqrt{3}}{2}$,以橢圓E的長軸和短軸為對角線的四邊形的周長為4$\sqrt{5}$,直線l:y=kx+m與y軸交于點(diǎn)P,與橢圓E交于A、B兩個相異點(diǎn),且$\overrightarrow{AP}$=λ$\overrightarrow{PB}$.
(I)求橢圓E的方程;
(Ⅱ)是否存在m,使$\overrightarrow{OA}$+λ$\overrightarrow{OB}$=4$\overrightarrow{OP}$?若存在,求m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.若x,y∈R+,xy2=4,則x+2y的最小值,x+y的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.等差數(shù)列{an}中,a3-a7=-12,a4+a6=-4,求它的前10項(xiàng)和S10

查看答案和解析>>

同步練習(xí)冊答案