8.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x<0}\\{2x-1,x≥0}\end{array}\right.$,若f(f(m))=0,則m=-1或$\frac{3}{4}$.

分析 由已知得f(m)=$\frac{1}{2}$,由此利用分段函數(shù)的性質(zhì)能求出m的值.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x<0}\\{2x-1,x≥0}\end{array}\right.$,f(f(m))=0,
∴f(m)≥0,2f(m)-1=0,解得f(m)=$\frac{1}{2}$,
當(dāng)m<0時(shí),f(m)=${2}^{m}=\frac{1}{2}$,解得m=-1;
當(dāng)m≥0時(shí),f(m)=2m-1=$\frac{1}{2}$,解得m=$\frac{3}{4}$.
∴m的值為-1或$\frac{3}{4}$.
故答案為:-1或$\frac{3}{4}$.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意分段函數(shù)的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)集合A={x|$\frac{1}{2}$<x<3},B={x|(x+1)(x-2)<0},則A∩B=( 。
A.{x|$\frac{1}{2}$<x<2}B.{x|-1<x<3}C.{x|$\frac{1}{2}$<x<1}D.{x|1<x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.設(shè)ξ為隨機(jī)變量,從邊長(zhǎng)為1的正方體12條棱中任取兩條,當(dāng)兩條棱相交時(shí),ξ=0;當(dāng)兩條棱異面時(shí),ξ=1;當(dāng)兩條棱平行時(shí),ξ的值為兩條棱之間的距離,則數(shù)學(xué)期望Eξ=$\frac{{6+\sqrt{2}}}{11}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知圓x2+y2=4的兩弦AB,CD交于點(diǎn)P($\frac{\sqrt{5}-1}{2}$,$\frac{\sqrt{5}+1}{2}$),且$\overrightarrow{AB}$$•\overrightarrow{CD}$=0,則|$\overrightarrow{AD}$$+\overrightarrow{CB}$|的值為2$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知i是虛數(shù)單位,m,n∈R,且m+2i=2-ni,則$\frac{m+ni}{m-ni}$的共軛復(fù)數(shù)為i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,過(guò)F1且與x軸垂直的直線交橢圓于A、B兩點(diǎn),直線AF2與橢圓的另一個(gè)交點(diǎn)為C,若△ABF2的面積是△BCF2的面積的2倍,則橢圓的離心率為( 。
A.$\frac{\sqrt{5}}{5}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{10}}{5}$D.$\frac{3\sqrt{3}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和Sn滿足:4Sn=(an-1)(an+3),(n∈N*
(1)求an
(2)若bn=2n•an,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.函數(shù)f(x)=$\left\{\begin{array}{l}{x+2(x≤0)}\\{-{x}^{2}+2x+2(x>0)}\end{array}\right.$的圖象和函數(shù)g(x)=2x的圖象的交點(diǎn)的個(gè)數(shù)有2個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知θ為銳角,ln(1+sinθ)=a,ln($\frac{1}{1-sinθ}$)=b,則lncosθ的值為$\frac{a-b}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案