分析 由題意可得,當(dāng)θ=π時(shí),滿足題目條件,由此可得cosθ的最小值是-1.
解答 解:如圖,設(shè)$\overrightarrow{OA}=\overrightarrow{a}$,$\overrightarrow{OD}=\overrightarrow$,$\overrightarrow{OC}=2\overrightarrow{a}$,$\overrightarrow{OB}=-m\overrightarrow$,
且|$2\overrightarrow{a}$|>|-m$\overrightarrow$|,|$\overrightarrow{a}$|<$|-m\overrightarrow|$,
則有非零向量$\overrightarrow{a}$,$\overrightarrow$的夾角為π,向量2$\overrightarrow{a}$-m$\overrightarrow$與$\overrightarrow{a}$-m$\overrightarrow$的夾角也為π,
此時(shí)cosθ的最小值是cosπ=-1.
故答案為:-1.
點(diǎn)評(píng) 本題考查數(shù)量積表示兩個(gè)向量的夾角,考查了數(shù)形結(jié)合的解題思想方法,考查了想象能力和理解能力,有一定難度.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{11}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1-a | B. | a-1 | C. | -1 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com