13.若實數(shù)x、y滿足約束條件$\left\{\begin{array}{l}{2x-y-2≤0}\\{2x+y-4≥0}\\{y≤2}\end{array}\right.$,則$\frac{x}{y}$的取值范圍是(  )
A.[$\frac{2}{3}$,2]B.[$\frac{1}{2}$,$\frac{3}{2}$]C.[$\frac{3}{2}$,2]D.[1,2]

分析 作出不等式組對應(yīng)的平面區(qū)域,設(shè)k=$\frac{y}{x}$,則z=$\frac{x}{y}$=$\frac{1}{k}$,利用k的幾何意義進行求解即可.

解答 解:作出不等式組對應(yīng)的平面區(qū)域,則由圖象知x>0,
則設(shè)k=$\frac{y}{x}$,則z=$\frac{x}{y}$=$\frac{1}{k}$,
則k的幾何意義是區(qū)域內(nèi)的點到原點的斜率,
由圖象知,OA的斜率最大,OC的斜率最小,
由$\left\{\begin{array}{l}{y=2}\\{2x+y-4=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$,即A(1,2),
由$\left\{\begin{array}{l}{2x-y-2=0}\\{2x+y-4=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=\frac{3}{2}}\\{y=1}\end{array}\right.$,即C($\frac{3}{2}$,1),
則OA的斜率k=2,OC的斜率k=$\frac{1}{\frac{3}{2}}$=$\frac{2}{3}$,
則$\frac{2}{3}$≤k≤2,則$\frac{1}{2}$≤$\frac{1}{k}$≤$\frac{3}{2}$,
即$\frac{1}{2}$≤$\frac{x}{y}$≤$\frac{3}{2}$,
即$\frac{x}{y}$的取值范圍是[$\frac{1}{2}$,$\frac{3}{2}$],
故選:B

點評 本題主要考查線性規(guī)劃的應(yīng)用,利用換元法轉(zhuǎn)化為直線斜率的取值范圍是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,在正三棱柱ABC-A1B1C1中,D是邊BC上異于C的一點,AD⊥C1D.
(1)求證:AD⊥平面BCC1B1;
(2)如果點E是B1C1的中點,求證:平面A1EB∥平面ADC1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.數(shù)列{an}中,已知a0=1,a1=3,且${a}_{n}^{2}$-an-1an+1=(-1)n(n∈N),則a3等于33.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)在定義域R上恒有:
①f(x)=f(-x),②f(2+x)=f(2-x),當x∈[0,4)時,f(x)=-x2+4x.
(1)求f(8);
(2)求f(x)在[0,2015]內(nèi)零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2sin\frac{π}{6}x,x≤2000}\\{x-1000,x>2000}\end{array}\right.$,則f(f(2016))=( 。
A.$\sqrt{3}$B.-$\sqrt{3}$C.1D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.數(shù)列{an}的前n項和為Sn滿足loga(Sn+a)=n+1(a>0且a≠1),且數(shù)列{an}是一個公比是$\frac{1}{2}$的等比數(shù)列,則實數(shù)a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.設(shè)0<x<2,求函數(shù)y=$\sqrt{3x•(8-3x)}$的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥BD于O,E為線段PC上一點,且AC⊥BE,
(1)求證:PA∥平面BED;
(2)若BC∥AD,BC=$\sqrt{2}$,AD=2$\sqrt{2}$,PA=3且AB=CD,求PB與面PCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.(普通中學做)已知數(shù)列{an}滿足a1+3a2+5a3+…+(2n-1)an=(n-1)3n+1+3(n∈N*),則數(shù)列{an}的前n項和Sn=$\frac{3}{2}({3}^{n}-1)$.

查看答案和解析>>

同步練習冊答案