分析 利用二次函數(shù)的對稱軸以及開口方向,通過對稱軸是否在區(qū)間內(nèi),討論求函數(shù)的最小值.
解答 解:函數(shù)f(x)=(x+2)2-2的圖象的對稱軸方程為x=-2,開口向上.
當-2∈[t,t+2],即t≤-2≤t+2,也就是-4≤t≤-2時,g(t)=f(-2)=-2;
當-2∉[t,t+2]時,
①當t>-2時,f(x)在[t,t+2]上為增函數(shù),故g(t)=f(t)=t2+4t+2.
②當t+2<-2,即t<-4時,f(x)在[t,t+2]上為減函數(shù),
故g(t)=f(t+2)=(t+2)2+4(t+2)+2=t2+8t+14.
故g(t)的解析式為g(t)=$\left\{\begin{array}{l}{{t}^{2}+8t+14,t<-4}\\{-2,-4≤t≤-2}\\{{t}^{2}+4t+2,t>-2}\end{array}\right.$.
點評 本題考查二次函數(shù)的最值的應(yīng)用,考查分類討論的思想方法和分析問題解決問題的能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,2) | B. | (2,3) | C. | (3,4) | D. | (4,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x2+y2=$\frac{1}{5}$ | B. | (x-1)2+y2=$\frac{2}{5}$ | C. | x2+y2=$\frac{4}{5}$ | D. | x2+y2=$\frac{3}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=$\frac{1}{x+2}$ | B. | f(x)=-(x+1)2 | C. | f(x)=1+2x2 | D. | f(x)=-|x| |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (6,7) | B. | (7,8) | C. | (8,9) | D. | (9,10) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{8}{5}$ | B. | $\frac{7}{5}$ | C. | $\frac{6}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com