分析 不妨設(shè)EF⊥平面BCF,則四邊形ABCD為矩形,設(shè)F到平面ABCD的距離為h,分別用AB,BC,h表示出兩個(gè)幾何體的體積得出比值.
解答 解:設(shè)F到平面ABCD的距離為d,
不妨設(shè)EF⊥平面BCF,則四邊形ABCD為矩形,
∴S△BCF=$\frac{1}{2}BC•h$,S矩形ABCD=AB•BC.
∴VF-BCE=VE-BCF=$\frac{1}{3}{S}_{△BCF}•EF$=$\frac{1}{6}BC•EF•h$,
又VE-ABCD=$\frac{1}{3}{S}_{矩形ABCD}•h$=$\frac{1}{3}AB•BC•h$.
∴$\frac{{V}_{E-ABCD}}{{V}_{E-BCF}}=\frac{\frac{1}{3}AB•BC•h}{\frac{1}{6}BC•EF•h}$=$\frac{2AB}{EF}$=4.
故答案為:4.
點(diǎn)評(píng) 本題考查了棱錐的體積計(jì)算,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (2,3) | B. | [0,1] | C. | [0,+∞) | D. | (-∞,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com